Name: \qquad

Entry number: \qquad

There are 3 questions for a total of 20 points.

1. (6 points) Find the eigenvalues and corresponding eigenvectors for the following matrices (corresponding to single qubit gates):

$$
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad Y=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad Z=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad S=\left[\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right] \quad H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Solution:

- Matrix X : The characteristic equation corresponding to X is $\lambda^{2}-1=0$ that gives $\lambda= \pm 1$. The eigenvectors for $+1,-1$ solves to $\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -1\end{array}\right]$ respectively.
- Matrix Y : Eigenvalues $+1,-1$ with eigenvectors $\frac{1}{\sqrt{2}}\left[\begin{array}{c}-i \\ 1\end{array}\right]$ and $\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -i\end{array}\right]$ respectively.
- Matrix Z : Eigenvalues $+1,-1$ with eigenvectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ respectively.
- Matrix S : Eigenvalues $1, i$ with eigenvectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ respectively.
- Matrix H : Eigenvalues $+1,-1$ with eigenvectors $\left[\begin{array}{c}1 \\ -1+\sqrt{2}\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1-\sqrt{2}\end{array}\right]$ respectively.

2. (6 points) Suppose Bob is given a quantum state chosen from a set $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle, \ldots,\left|\psi_{m}\right\rangle$ of linearly independent states. Construct a POVM $\left\{E_{1}, E_{2}, \ldots, E_{m+1}\right\}$ such that if outcome E_{i} occurs, $1 \leq i \leq m$, then Bob knows with certainty that he was given the state $\left|\psi_{i}\right\rangle$.

Solution: For every state $\left|\psi_{i}\right\rangle$, we will construct a state $\left|\psi_{i}^{\prime}\right\rangle$ with the property that:

$$
\begin{equation*}
\forall j \neq i,\left\langle\psi_{j} \mid \psi_{i}^{\prime}\right\rangle=0 \tag{1}
\end{equation*}
$$

Then, we will set the POVM as: $E_{i}=\frac{1}{m}\left|\psi_{i}^{\prime}\right\rangle\left\langle\psi_{i}^{\prime}\right|$ for $i=1, \ldots, m$ and $E_{m+1}=I-\sum_{i=1}^{m} E_{i}$. From (1) it follows that if E_{i} is the outcome, then the probability that the pre-measurement state was $\left|\psi_{j}\right\rangle$ for some $j \neq i$ is 0 . We will now argue that E_{1}, \ldots, E_{m+1} are valid POVM elements. For this, we need to show that:

1. E_{i} 's are positive
2. $E_{1}+\ldots+E_{m+1}=I$.

The second condition follows from the definition. The fact that E_{1}, \ldots, E_{m} are positive follows from the fact that E_{i} is an outer product. For E_{m+1}, consider any vector $|v\rangle$:

$$
\begin{aligned}
\langle v| E_{m+1}|v\rangle & =\langle v| I|v\rangle-\sum_{i=1}^{m}\langle v| E_{i}|v\rangle \\
& =\||v\rangle \|^{2}-\sum_{i=1}^{m} \frac{1}{m}\langle v|\left|\psi_{i}^{\prime}\right\rangle\left\langle\psi_{i}^{\prime}\right||v\rangle \\
& \geq 0 \quad\left(\text { Since for any vector }|v\rangle \text { and state }|\psi\rangle,\langle v|\left|\psi_{i}^{\prime}\right\rangle\left\langle\psi_{i}^{\prime}\right||v\rangle \leq \||v\rangle \|^{2}\right)
\end{aligned}
$$

What remains is to show the construction of the states $\left|\psi_{i}^{\prime}\right\rangle$ such that eqn. (1) holds. For $i=1, \ldots, m$, let P_{i} denote the projector for the space spanned by the vectors $\left\{\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{m}\right\rangle\right\} \backslash\left|\psi_{i}\right\rangle$. Then define:

$$
\left|\psi_{i}^{\prime \prime}\right\rangle=\left|\psi_{i}\right\rangle-P_{i}\left|\psi_{i}\right\rangle \quad \text { and } \quad\left|\psi_{i}^{\prime}\right\rangle=\frac{\left|\psi_{i}^{\prime \prime}\right\rangle}{\|\left|\psi_{i}^{\prime \prime}\right\rangle \|}
$$

Note that for any $j \neq i$, we have $\left\langle\psi_{j} \mid \psi_{i}^{\prime \prime}\right\rangle=0$ which is exactly what we wanted.
3. (8 points) Suppose you have two qubits in the bell state $\frac{|01\rangle-|10\rangle}{\sqrt{2}}$ and you apply the teleportation protocol to the first qubit. What is the result? (Please try giving an appropriate interpretation for your calculations.)

Solution: The teleportation scenario is described in the following figure:

We can calculate the states of the above system.
$\left|\psi_{0}\right\rangle=\left(\frac{|10\rangle-|01\rangle}{\sqrt{2}}\right)\left(\frac{|00\rangle+|11\rangle}{\sqrt{2}}\right)$
$=\frac{1}{2}(|1000\rangle+|1011\rangle-|0100\rangle-|0111\rangle)$
$\left|\psi_{1}\right\rangle=\frac{1}{2}(|1000\rangle+|1011\rangle-|0110\rangle-|0101\rangle)$
$\left|\psi_{2}\right\rangle=\frac{1}{2}\left(|1\rangle\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)|00\rangle+|1\rangle\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)|11\rangle-|0\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)|10\rangle-|0\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)|01\rangle\right)$

Since a measurement happens after state $\left|\psi_{2}\right\rangle,\left|\psi_{3}\right\rangle$ is the following ensemble of states:

In the first case, the X and Z gates are not applied to the last qubit and hence the final state of the first and the last qubit is $\left|\psi_{4}\right\rangle=\frac{|10\rangle-|01\rangle}{\sqrt{2}}$.
In the second case, only the X gate is applied to the last qubit and hence the final state of the first and the last qubit is $\left|\psi_{4}\right\rangle=\frac{|10\rangle-|01\rangle}{\sqrt{2}}$.
In the third case, the Z gate is applied to the last qubit and hence the final state of the first and the last qubit is $\left|\psi_{4}\right\rangle=\frac{|10\rangle-|01\rangle}{\sqrt{2}}$.
In the fourth case, the X and Z gate is applied to the last qubit and hence the final state of the first and the last qubit is $\left|\psi_{4}\right\rangle=\frac{|10\rangle-|01\rangle}{\sqrt{2}}$.

So, $\left|\psi_{4}\right\rangle=\frac{|10\rangle-|01\rangle}{\sqrt{2}}$. Note that this is the same state as the qubits that Alice had in the beginning. So, effectively the entanglement has been teleported in this protocol.

