Name:

Entry number:

There are 3 questions for a total of 20 points.

1. (6 points) Find the eigenvalues and corresponding eigenvectors for the following matrices (corresponding to single qubit gates):

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \quad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \quad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

Solution:

- <u>Matrix X</u>: The characteristic equation corresponding to X is $\lambda^2 1 = 0$ that gives $\lambda = \pm 1$. The eigenvectors for +1, -1 solves to $\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$ and $\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix}$ respectively.
- <u>Matrix Y</u>: Eigenvalues +1, -1 with eigenvectors $\frac{1}{\sqrt{2}} \begin{bmatrix} -i \\ 1 \end{bmatrix}$ and $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -i \end{bmatrix}$ respectively.
- <u>Matrix Z</u>: Eigenvalues +1, -1 with eigenvectors $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ respectively.
- <u>Matrix S</u>: Eigenvalues 1, i with eigenvectors $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ respectively.
- <u>Matrix H</u>: Eigenvalues +1, -1 with eigenvectors $\begin{bmatrix} 1\\ -1+\sqrt{2} \end{bmatrix}$ and $\begin{bmatrix} 1\\ -1-\sqrt{2} \end{bmatrix}$ respectively.
- 2. (6 points) Suppose Bob is given a quantum state chosen from a set $|\psi_1\rangle$, $|\psi_2\rangle$, ..., $|\psi_m\rangle$ of linearly independent states. Construct a POVM $\{E_1, E_2, ..., E_{m+1}\}$ such that if outcome E_i occurs, $1 \le i \le m$, then Bob knows with certainty that he was given the state $|\psi_i\rangle$.

Solution: For every state $|\psi_i\rangle$, we will construct a state $|\psi'_i\rangle$ with the property that:

$$\langle j \neq i, \langle \psi_j | \psi'_i \rangle = 0.$$
 (1)

Then, we will set the POVM as: $E_i = \frac{1}{m} |\psi_i'\rangle \langle \psi_i'|$ for i = 1, ..., m and $E_{m+1} = I - \sum_{i=1}^m E_i$. From (1) it follows that if E_i is the outcome, then the probability that the pre-measurement state was $|\psi_j\rangle$ for some $j \neq i$ is 0. We will now argue that $E_1, ..., E_{m+1}$ are valid POVM elements. For this, we need to show that:

1. E_i 's are positive

2. $E_1 + \ldots + E_{m+1} = I$.

The second condition follows from the definition. The fact that $E_1, ..., E_m$ are positive follows from the fact that E_i is an outer product. For E_{m+1} , consider any vector $|v\rangle$:

$$\begin{aligned} \langle v | E_{m+1} | v \rangle &= \langle v | I | v \rangle - \sum_{i=1}^{m} \langle v | E_i | v \rangle \\ &= || |v \rangle ||^2 - \sum_{i=1}^{m} \frac{1}{m} \langle v | |\psi'_i \rangle \langle \psi'_i | | v \rangle \\ &\geq 0 \quad (\text{Since for any vector } |v \rangle \text{ and state } |\psi \rangle, \langle v | |\psi'_i \rangle \langle \psi'_i | | v \rangle \leq || |v \rangle ||^2) \end{aligned}$$

What remains is to show the construction of the states $|\psi'_i\rangle$ such that eqn. (1) holds. For i = 1, ..., m, let P_i denote the projector for the space spanned by the vectors $\{|\psi_1\rangle, ..., |\psi_m\rangle\} \setminus |\psi_i\rangle$. Then define:

$$|\psi_i''\rangle = |\psi_i\rangle - P_i |\psi_i\rangle \text{ and } |\psi_i'\rangle = \frac{|\psi_i''\rangle}{|||\psi_i''\rangle||}.$$

Note that for any $j \neq i$, we have $\langle \psi_j | \psi_i'' \rangle = 0$ which is exactly what we wanted.

3. (8 points) Suppose you have two qubits in the bell state $\frac{|01\rangle - |10\rangle}{\sqrt{2}}$ and you apply the teleportation protocol to the first qubit. What is the result? (*Please try giving an appropriate interpretation for your calculations.*)

Since a measurement happens after state $|\psi_2\rangle$, $|\psi_3\rangle$ is the following ensemble of states:

$$|\psi_{3}\rangle = \begin{cases} \frac{|1000\rangle - |0001\rangle}{\sqrt{2}} & \text{w.p. } 1/4\\ \frac{|1011\rangle - |0010\rangle}{\sqrt{2}} & \text{w.p. } 1/4\\ \frac{|1100\rangle + |0101\rangle}{\sqrt{2}} & \text{w.p. } 1/4\\ \frac{|1111\rangle + |0110\rangle}{\sqrt{2}} & \text{w.p. } 1/4 \end{cases}$$

In the first case, the X and Z gates are not applied to the last qubit and hence the final state of

In the first case, the X and Z gates are not applied to the last qubit and hence the final state of the first and the last qubit is $|\psi_4\rangle = \frac{|10\rangle - |01\rangle}{\sqrt{2}}$. In the second case, only the X gate is applied to the last qubit and hence the final state of the first and the last qubit is $|\psi_4\rangle = \frac{|10\rangle - |01\rangle}{\sqrt{2}}$. In the third case, the Z gate is applied to the last qubit and hence the final state of the first and the last qubit is $|\psi_4\rangle = \frac{|10\rangle - |01\rangle}{\sqrt{2}}$. In the third case, the Z gate is applied to the last qubit and hence the final state of the first and the last qubit is $|\psi_4\rangle = \frac{|10\rangle - |01\rangle}{\sqrt{2}}$. In the fourth case, the X and Z gate is applied to the last qubit and hence the final state of the first and the last qubit is $|\psi_4\rangle = \frac{|10\rangle - |01\rangle}{\sqrt{2}}$.

So, $|\psi_4\rangle = \frac{|10\rangle - |01\rangle}{\sqrt{2}}$. Note that this is the same state as the qubits that Alice had in the beginning. So, effectively the **entanglement has been teleported** in this protocol.