Name: $\qquad$

Entry number: $\qquad$
There are 5 questions for a total of 35 points.

1. Answer the following questions:
(a) ( $1 \frac{1}{2}$ points) Draw a quantum circuit on two qubits that copies the $|+\rangle,|-\rangle$ state. That is, the circuit should have the following behaviour:

(b) ( $1 \frac{1}{2}$ points) Draw a 4 -qubit quantum circuit that takes the state $|0000\rangle$ to $\frac{1}{\sqrt{2}}(|0000\rangle+|1111\rangle)$.
(c) (2 points) Consider the circuit below:


Here $\alpha_{i}$ denotes the operation $\left[\begin{array}{cc}1 & 0 \\ 0 & e^{i \alpha_{i}}\end{array}\right]$. Suppose at the end the measurement is taken in the computational basis. What is the probability of seeing $|00 \ldots 0\rangle$ ?
(d) (3 points) Consider the Shor's 9-qubit error correcting code discussed in the class. Suppose the 9 -qubit code for $\alpha|0\rangle+\beta|1\rangle$ undergoes the following changes: the second and sixth qubits get bit-flipped and the first and eighth qubit get phase-flipped. Show the intermediate states of the 9 qubits in the process of error correction.
2. (5 points) For $p, q \in\{0,1\}$ the 3 -qubit unitary operation $U_{p, q}$ is defined as:

$$
U_{p, q}|x, y, z\rangle=\left\{\begin{array}{l}
|x y\rangle|z \oplus 1\rangle \quad \text { if } x=p \text { and } y=q \\
|x y\rangle|z\rangle \quad \text { Otherwise }
\end{array}\right.
$$

Starting with a 3 -qubit input state $|001\rangle$ consider the following sequence of operations:

1. Apply $H \otimes H \otimes H$
2. Apply $U_{a, b}$ for some $a, b \in\{0,1\}$
3. Apply $H \otimes H \otimes I$
4. Apply $U_{0,0}$
5. Apply $H \otimes H \otimes H$
6. Measure the 3 qubits in computational basis

Describe the measurement output. You may write your answer in terms of $a$ and $b$. Give appropriate explanation.
3. Consider the following 3-person game defined similarly to the 2-person CHSH game discussed in the class:

Alice, Bob, and Dave receive randomly generated bits $x, y, z \in\{0,1\}$ such that $x \oplus y \oplus z=0$ from Charlie. Their goal is to respond with bits $a, b$, and $c$ such that $a \oplus b \oplus c=x \vee y \vee z$. They are not allowed to communicate after receiving $x, y, z$.


Figure 1: The 3-person game.
Prove or disprove:
(a) (3 points) There is no classical deterministic or randomized strategy that allows Alice, Bob, and Dave to win with probability more than $3 / 4$.
(b) (5 points) There is a quantum strategy that allows Alice, Bob, and Dave to win with probability 1. Assume that Alice, Bob, and Dave share the qubits in the entangled state $\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)$.
4. (8 points) Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a 2-to-1 function. Design a Quantum algorithm for finding a collision (that is, $x \neq y$ such that $f(x)=f(y))$ with query complexity $O\left(n \cdot 2^{n / 3}\right)$.
(Hint: Use a combination of classical and quantum ideas.)
5. (6 points) In the lectures and in the exams we have used the following diagram for unitary operation with respect to a boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ :


We noted that this was a simplification and does not represent the correct scenario since evaluation of the function $f$ may involve additional ancilla qubits. So, the correct picture (taking into consideration the ancilla qubits) is given below.


The $m$ ancilla qubits are initialised to $|0\rangle$ and the behaviour of this quantum gate in general is given as:

$$
U_{f}|x\rangle|y\rangle|0\rangle=|x\rangle|y \oplus f(x)\rangle|g(x)\rangle
$$

Here $g(x)$ is some arbitrary function depending on the input $x$. We said in the class that it is a good idea to "uncompute" the ancilla qubits. That is, make sure that $g(x)=0$. Note that this is always possible because of reversible nature of quantum gates. Suppose, $U_{f}$ does not "uncompute" the ancilla qubits which means that $g(x)$ may be some non-zero function. Discuss what could go wrong in the context of the Deutsch-Jozsa algorithm. The circuit for the Deutsch-Jozsa algorithm is given below.


