Name:	
Entry number:	
There are 4 questions for a total of 15 points.	
 Use ideas developed in the class to calculate the following: (a) (¹/₂ point) Give the value of 5⁵⁴⁷ (mod 15). 	
 (Note that your answer should be an integer between 0 and 14.) (b) (¹/₂ point) Give the value of 9³¹³ (mod 55). 	(a)
(Note that your answer should be an integer between 0 and 54.)	
(c) (1 point) Find an integer x that simultaneously satisfies the following $x \equiv 2 \pmod{5}$, $x \equiv 2 \pmod{7}$, and $x \equiv 5 \pmod{9}$. (Your answer should be an integer between 0 and 314.)	(b)ng three linear congruences
	(c)

2. (3 points) In how many ways can you distribute n indistinguishable apples and one orange to k children such that each child gets at least one fruit? Give reasons.

3. Answer the following questions:

(a) (1 point) <u>State true or false</u>: Any bipartite graph (L, R, E) with |L| = |R| in which all vertices have degree exactly equal to 5 has a perfect matching.

(a) _____

(b) (3 points) Give reason for your answer to part (a).

4. (6 points) Show that any graph with 2n vertices and at least $n^2 + 1$ edges for $n \ge 2$ has a *triangle* (i.e., three vertices v_1, v_2, v_3 such that there is an edge between any pair of vertices among these three).

Extra space