Name:
Entry number: \qquad
There are 4 questions for a total of 15 points.

1. Use ideas developed in the class to calculate the following:
(a) $\left(1 / 2\right.$ point) Give the value of $5^{547}(\bmod 15)$.
(Note that your answer should be an integer between 0 and 14.)
(a)
(b) $\left(1 / 2\right.$ point) Give the value of $9^{313}(\bmod 55)$.
(Note that your answer should be an integer between 0 and 54.)
(b) \qquad
(c) (1 point) Find an integer x that simultaneously satisfies the following three linear congruences $x \equiv 2(\bmod 5), x \equiv 2(\bmod 7)$, and $x \equiv 5(\bmod 9)$.
(Your answer should be an integer between 0 and 314.)
(c) \qquad
2. (3 points) In how many ways can you distribute n indistinguishable apples and one orange to k children such that each child gets at least one fruit? Give reasons.
3. Answer the following questions:
(a) (1 point) State true or false: Any bipartite graph (L, R, E) with $|L|=|R|$ in which all vertices have degree exactly equal to 5 has a perfect matching.
(a)
(b) (3 points) Give reason for your answer to part (a).
4. (6 points) Show that any graph with $2 n$ vertices and at least $n^{2}+1$ edges for $n \geq 2$ has a triangle (i.e., three vertices v_{1}, v_{2}, v_{3} such that there is an edge between any pair of vertices among these three).

Extra space

