Name: _____

Entry number:

There are 6 questions for a total of 15 points.

1. (1 point) Fill the truth-table below:

P	Q	R	$P \leftrightarrow Q$	$\neg Q \lor R$	$(P \leftrightarrow Q) \to (\neg Q \lor R)$
Т	Т	Т			
Т	Т	F			
Т	F	Т			
F	Т	Т			
Т	F	F			
F	Т	F			
F	F	Т			
F	F	F			

2. Let the domain of discourse consist of all real numbers and let P(x, y) mean yx² = y³.
(a) (¹/₂ point) State whether the following quantified statement is true or false:

$$(\exists x \forall y P(x, y)) \lor (\exists y \forall x P(x, y))$$

(a) _____

(b) (1 point) Give reasons for your answer to part (a).

3. $(2 \frac{1}{2} \text{ points})$ Let Q(p, s, z) be the statement "the price of product p in store s is z rupees", where the domain of variable p consists of all products, s consists of all stores, and z consists of all valid product prices. You may assume for this question that all stores carry all products. Use quantifiers to express the following statement: "Store A is the cheapest store for all products".

4. Let A, B, C be non-empty sets, and let $g: A \to B$ and $h: A \to C$ and let $f: A \to B \times C$ defined as:

$$f(x) = (g(x), h(x)).$$

Answer the following:

- (a) $(\frac{1}{2} \text{ point})$ State true or false: If f is onto, then both g and h are onto.
- (b) $(\frac{1}{2} \text{ point})$ State true or false: If g and h are onto, then f is onto.
- (c) $\binom{1}{2}$ point) <u>State true or false</u>: If at least one of g, h is one-to-one, then f is one-to-one.
- (d) $(\frac{1}{2} \text{ point})$ State true or false: If g and h are not one-to-one, then f is not one-to-one.

(e) (2 points)	Give reasons for	or your answer	to part (b).

(f) (2 points) Give reasons for your answer to part (d).

(a) _____

(b) _____

(c) _____

(d) _____

5. Answer the following:

(a) $(\frac{1}{2} \text{ point})$ State true or false: Let $f(n) = 5n2^n + 3^n$ and $g(n) = n3^n$. Then f(n) = O(g(n)).

(a) _____

(b) (¹/₂ point) <u>State true or false</u>: Let $f(n) = 5n2^n + 3^n$ and $g(n) = n3^n$. Then g(n) = O(f(n)).

(b) _____

6. (3 points) Prove or disprove: The function $f: \mathbb{N} \to \mathbb{N}$ defined as:

$$f(n) = \begin{cases} n-1 & \text{if } n \text{ is odd} \\ n+1 & \text{if } n \text{ is even} \end{cases}$$

is one-to-one and onto. (Note that 0 is an even number)

Space for rough work