Name: \qquad

Entry number: \qquad
There are 6 questions for a total of 15 points.

1. (1 point) Fill the truth-table below:

P	Q	R	$P \leftrightarrow Q$	$\neg Q \vee R$	$(P \leftrightarrow Q) \rightarrow(\neg Q \vee R)$
T	T	T			
T	T	F			
T	F	T			
F	T	T			
T	F	F			
F	T	F			
F	F	T			
F	F	F			

2. Let the domain of discourse consist of all real numbers and let $P(x, y)$ mean $y x^{2}=y^{3}$.
(a) ($1 / 2$ point) State whether the following quantified statement is true or false:

$$
(\exists x \forall y P(x, y)) \vee(\exists y \forall x P(x, y))
$$

(a) \qquad
(b) (1 point) Give reasons for your answer to part (a).
3. ($21 / 2$ points) Let $Q(p, s, z)$ be the statement "the price of product p in store s is z rupees", where the domain of variable p consists of all products, s consists of all stores, and z consists of all valid product prices. You may assume for this question that all stores carry all products. Use quantifiers to express the following statement: "Store A is the cheapest store for all products".
4. Let A, B, C be non-empty sets, and let $g: A \rightarrow B$ and $h: A \rightarrow C$ and let $f: A \rightarrow B \times C$ defined as:

$$
f(x)=(g(x), h(x))
$$

Answer the following:
(a) $(1 / 2$ point) State true or false: If f is onto, then both g and h are onto.
(a) \qquad
(b) ($1 / 2$ point) State true or false: If g and h are onto, then f is onto.
(b)
(c) ($1 / 2$ point) State true or false: If at least one of g, h is one-to-one, then f is one-to-one.
(c) \qquad
(d) ($1 / 2$ point) State true or false: If g and h are not one-to-one, then f is not one-to-one.
(d)
(e) (2 points) Give reasons for your answer to part (b).
(f) (2 points) Give reasons for your answer to part (d).
5. Answer the following:
(a) $\left(1 / 2\right.$ point) State true or false: Let $f(n)=5 n 2^{n}+3^{n}$ and $g(n)=n 3^{n}$. Then $f(n)=O(g(n))$.
\qquad
(b) $\left(1 / 2\right.$ point) State true or false: Let $f(n)=5 n 2^{n}+3^{n}$ and $g(n)=n 3^{n}$. Then $g(n)=O(f(n))$.
(b) \qquad
6. (3 points) Prove or disprove: The function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined as:

$$
f(n)= \begin{cases}n-1 & \text { if } n \text { is odd } \\ n+1 & \text { if } n \text { is even }\end{cases}
$$

is one-to-one and onto. (Note that 0 is an even number)

Space for rough work

