## CSL202: Discrete Mathematical Structures

Tutorial/Homework: 07

1. A jigsaw puzzle is put together by successively joining pieces that fit together into blocks. A move is made each time a piece is added to a block, or when two blocks are joined. Use strong induction to prove that no matter how the moves are carried out, exactly $n-1$ moves are required to assemble a puzzle with $n$ pieces.
2. Find the flaw with the following "proof" that $a^{n}=1$ for all nonnegative integers $n$, whenever $a$ is a nonzero real number.
Basis step: $a^{0}=1$ is true by the definition of $a^{0}$.
Inductive step: Assume that $a^{j}=1$ for all nonnegative integers $j$ with $j \leq k$. Then note that $a^{k+1}=\frac{a^{k} \cdot a^{k}}{a^{k-1}}=\frac{1 \cdot 1}{1}=1$.
3. We will use the definition of a bipartite graph in this question:

Definition 1.0.1 (Bipartite graph) A bipartite graph is a graph where the vertices can be partitioned into two non-empty disjoint sets $X, Y$ such that there are no edges between two vertices of $X$ or two vertices of $y$ (i.e., all edges are between a vertex in $X$ and a vertex in $Y$ ). Bipartite graphs are typically defined as $(X, Y, E)$, where $X$ and $Y$ denote the partitions and $E$ denote the set of edges.
Given a Bipartite graph $G=(X, Y, E)$, a matching in $G$ is defined to be a subset of $M \subseteq E$ such that for any $(x, y) \in M$, both $x$ and $y$ do not appear as the end vertex of any edge in $M$. Given $|X|=|Y|=n$, a perfect matching of $G$ is a matching of size $n$. Show the following theorem:
Theorem 1.0.2 (Hall's Theorem) Given a bipartite graph $G=(X, Y, E)$ such that $n=|X|=|Y|$, there is a perfect matching in $G$ is and only if for ever subset of vertices $S \subseteq X,|N(S)| \geq|S|$, where $N(S)$ denotes the set of neighboring vertices of $S$.
4. Let $S$ be the subset of the set of ordered pairs of integers defined recursively by:

Basis step: $(0,0) \in S$
Recursive step: If $(a, b) \in S$, then $(a, b+1) \in S,(a+1, b+1) \in S$, and $(a+2, b+1) \in S$.
(a) List the elements of $S$ produced by the first four applications of the recursive definition.
(b) Use strong induction on the number of applications of the recursive step of the definition to show that $a \leq 2 b$ whenever $(a, b) \in S$.
(c) Use structural induction to show that $a \leq 2 b$ whenever $(a, b) \in S$.
5. Solve the following recurrence relation and write the exact value of $T(n)$.

$$
T(n)= \begin{cases}T(n-1) & \text { if } n>1 \text { and } n \text { is odd } \\ 2 \cdot T(n / 2) & \text { if } n>1 \text { and } n \text { is even } \\ 1 & \text { if } n=1\end{cases}
$$

(Hint: Unrolling may be tricky. You may want to guess the bound and then use induction to confirm your guess.)

