CSL202: Discrete Mathematical Structures Tutorial/Homework: 05

1. Consider the following algorithm that takes as input an integer array A and its size n.

FunnyAlgo (A, n)- if $(n < 2^{20})$ - for i = 1 to n - 1- for j = 1 to i- $A[j+1] \leftarrow A[j] + 1$ - else - for i = 2 to n- $A[i] \leftarrow A[i] + A[i-1]$

- (a) <u>State true or false</u>: The running time is $O(n^2)$?
- (b) <u>State true or false</u>: The running time is $\Omega(n)$?
- (c) <u>State true or false</u>: The running time is $\Omega(n^2)$?
- (d) Write the running time of the algorithm in Θ notation. That is give a tight bound on the worst-case running time of the above algorithm.
- 2. Show that if a and b are both positive integers, then $(2^a-1) \pmod{(2^b-1)} = 2^a \pmod{b} 1$.
- 3. (a) Show that the positive integers less than 11, except 1 and 10, can be split into pairs of integers such that each pair consists of integers that are inverses of each other modulo 11.
 - (b) Use part (a) to show that $10! \equiv -1 \pmod{11}$.
- 4. Prove that an integer $(a_{n-1}, ..., a_0)$ is divisible by 11 if and only if $a_0 + a_2 + a_4 + ... \equiv a_1 + a_3 + ... \pmod{11}$.
- 5. Recall the Euclid-GCD(a, b) algorithm discussed in the lectures for finding the gcd of two integers a and b. Prove the following theorem:

Theorem 1.0.1 (Lame's theorem) For any integer $k \ge 1$, if $a > b \ge 1$ and $b < F_{k+1}$, then the call Euclid-GCD(a, b) makes fewer than k recursive calls.

Here F_k denotes the k^{th} number in the Fibonacci sequence (0, 1, 1, 2, 3, 5, 8, 13, ...)

6. Design an algorithm that takes as input positive integers a, b, m and outputs $a^b \pmod{m}$ (input/output is in binary). Discuss the worst-case time complexity of your algorithm.

7. Show that if p is prime, the only solutions of $x^2 \equiv 1 \pmod{p}$ are integers x such that $x \equiv 1 \pmod{p}$ or $x \equiv -1 \pmod{p}$.