CSL202: Discrete Mathematical Structures

Tutorial/Homework: 05

1. Consider the following algorithm that takes as input an integer array A and its size n.

$$
\begin{aligned}
& \text { FunnyAlgo }(A, n) \\
& \begin{array}{l}
\text { - if }\left(n<2^{20}\right) \\
\quad \text { - for } i=1 \text { to } n-1 \\
\quad-\text { for } j=1 \text { to } i \\
\quad-A[j+1] \leftarrow A[j]+1 \\
\text { - else } \quad \\
\quad \begin{array}{l}
\text { - for } i
\end{array} \quad=2 \text { to } n \\
\quad-A[i] \leftarrow A[i]+A[i-1]
\end{array}
\end{aligned}
$$

(a) State true or false: The running time is $O\left(n^{2}\right)$?
(b) State true or false: The running time is $\Omega(n)$?
(c) State true or false: The running time is $\Omega\left(n^{2}\right)$?
(d) Write the running time of the algorithm in Θ notation. That is give a tight bound on the worst-case running time of the above algorithm.
2. Show that if a and b are both positive integers, then $\left(2^{a}-1\right)\left(\bmod \left(2^{b}-1\right)\right)=2^{a(\bmod b)}-1$.
3. (a) Show that the positive integers less than 11 , except 1 and 10 , can be split into pairs of integers such that each pair consists of integers that are inverses of each other modulo 11.
(b) Use part (a) to show that $10!\equiv-1(\bmod 11)$.
4. Prove that an integer $\left(a_{n-1}, \ldots, a_{0}\right)$ is divisible by 11 if and only if $a_{0}+a_{2}+a_{4}+\ldots \equiv$ $a_{1}+a_{3}+\ldots(\bmod 11)$.
5. Recall the Euclid- $\operatorname{GCD}(a, b)$ algorithm discussed in the lectures for finding the gcd of two integers a and b. Prove the following theorem:
Theorem 1.0.1 (Lame's theorem) For any integer $k \geq 1$, if $a>b \geq 1$ and $b<F_{k+1}$, then the call Euclid-GCD (a, b) makes fewer than k recursive calls.
Here F_{k} denotes the $k^{t h}$ number in the Fibonacci sequence ($0,1,1,2,3,5,8,13, \ldots$)
6. Design an algorithm that takes as input positive integers a, b, m and outputs a^{b} (mod m) (input/output is in binary). Discuss the worst-case time complexity of your algorithm.
7. Show that if p is prime, the only solutions of $x^{2} \equiv 1(\bmod p)$ are integers x such that $x \equiv 1(\bmod p)$ or $x \equiv-1(\bmod p)$.

