CSL202: Discrete Mathematical Structures

Tutorial/Homework: 04

1. Answer the following:
(a) State true or false: $2^{\sqrt{\log _{2} n}}$ is $O(n)$.
(b) Give reason for your answer to part (a).
2. Answer the following:
(a) State true or false: 3^{n} is $O\left(2^{n}\right)$.
(b) Give reason for your answer to part (a).
3. Consider functions $f(n)=10 n 2^{n}+3^{n}$ and $g(n)=n 3^{n}$. Answer the following:
(a) State true or false: $f(n)$ is $O(g(n))$.
(b) State true or false: $f(n)$ is $\Omega(g(n))$.
(c) Give reason for your answer to part (b).
4. Show using induction that for all $n \geq 0,1+\frac{1}{2^{\mathrm{I}}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots+\frac{1}{2^{n}}=\frac{1-\left(\frac{1}{2}\right)^{n+1}}{1-\frac{1}{2}}$.
5. Consider the following recursive function:

F(n)

- If $(n>1) \mathrm{F}(n / 2)$
- Print("Hello World")

Let $R(n)$ denote the number of times this function prints "Hello World" given the positive integer n as input.
(a) What is $R(n)$, in big-O notation as a function of n ?
(b) Give reason for your answer to part (a).
6. Consider the following recursive algorithm that is supposed to convert any positive integer in decimal to binary format. \lfloor.$\rfloor denotes the floor function, n \% 2$ denotes the remainder when n is divided by 2 , and $\|$ denotes concatenation.

RecDecimalToBinary (n)

- $\operatorname{if}(n=0$ or $n=1)$ return (n)
-return(RecDecimalToBinary $(\lfloor n / 2\rfloor) \| n \% 2)$

Prove that the above algorithm is correct.
7. Show that:
(a) If $d(n)=O(f(n))$ and $f(n)=O(g(n))$, then $d(n)=O(g(n))$.
(b) $\max \{f(n), g(n)\}=O(f(n)+g(n))$.
(c) If $a(n)=O(f(n))$ and $b(n)=O(g(n))$, then $a(n)+b(n)=O(f(n)+g(n))$.
8. Consider the two algorithms given below. In the input, A denotes an integer array and n denotes the size of the array. Analyse the running time of these algorithms and express the running time in big-O notation.

$\operatorname{Alg} 1(A, n)$

- for $i=1$ to n
$-j \leftarrow i$
- while $(j<n)$
$-A[j] \leftarrow A[j]+10$
$-j \leftarrow j+3$

$$
\begin{aligned}
& \operatorname{Alg} 2(A, n) \\
& \quad-\text { for } i=1 \text { to } n \\
& \quad-\text { for } j=2 i \text { to } n \\
& \quad-A[i] \leftarrow A[j]+1
\end{aligned}
$$

9. Find counterexamples to each of these statements about congruences:
(a) If $a c \equiv b c(\bmod m)$, where a, b, c, and m are integers with $m \geq 2$, then $a \equiv b(\bmod m)$.
(b) If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, where a, b, c, d, and m are integers with c and d positive and $m \geq 2$, then $a^{c} \equiv b^{d}(\bmod m)$.
