CSL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

- How do we design a good hash function?
- A set S of keys from a universe $U = \{0, 1, ..., m-1\}$ is supposed to be stored in a table of size n with indices $T = \{0, 1, ..., n-1\}$.
 - Assume collisions are resolved using auxiliary data structure.
- What we need is a hash function $h: U \to T$ with the following main requirements:
 - **1** The hash function should minimize the number of collisions.
 - ② The space used should be proportional to the number of keys stored. (i.e., $n \approx |S|$)

- How do we design a good hash function?
- A set S of keys from a universe $U = \{0, 1, ..., m-1\}$ is supposed to be stored in a table of size n with indices $T = \{0, 1, ..., n-1\}$.
 - Assume collisions are resolved using auxiliary data structure.
- What we need is a hash function $h: U \to T$ with the following main requirements:
 - **1** The hash function should minimize the number of collisions.
 - 2 The space used should be proportional to the number of keys stored. (i.e., $n \approx |S|$)
- Claim 1: If m > n, then for any h there exists a key set S such that h has collision w.r.t. S (i.e., $\exists x, y \in S, h(x) = h(y)$)

- How do we design a good hash function?
- A set S of keys from a universe $U = \{0, 1, ..., m-1\}$ is supposed to be stored in a table of size n with indices $T = \{0, 1, ..., n-1\}$.
 - Assume collisions are resolved using auxiliary data structure.
- What we need is a hash function $h: U \to T$ with the following main requirements:
 - 1 The hash function should minimize the number of collisions.
 - 2 The space used should be proportional to the number of keys stored. (i.e., $n \approx |S|$)
- Claim 1: If m > n, then for any h there exists a key set S such that h has collision w.r.t. S (i.e., $\exists x, y \in S, h(x) = h(y)$)
 - Claim 1.1: Any fixed hash function $h: U \to T$, must map at least $\lceil \frac{m}{n} \rceil$ elements of U to some index in the set T.

- How do we design a good hash function?
- A set S of keys from a universe $U = \{0, 1, ..., m-1\}$ is supposed to be stored in a table of size n with indices $T = \{0, 1, ..., n-1\}$.
 - Assume collisions are resolved using auxiliary data structure.
- What we need is a hash function $h: U \to T$ with the following main requirements:
 - The hash function should minimize the number of collisions.
 - ② The space used should be proportional to the number of keys stored. (i.e., $n \approx |S|$)
- Claim 1: If m > n, then for any h there exists a key set S such that h has collision w.r.t. S (i.e., $\exists x, y \in S, h(x) = h(y)$)
- Claim 2: For any fixed key set S such that $|S| \le n$, there exists a hash function such that h has no collisions w.r.t. S.

- How do we design a good hash function?
- A set S of keys from a universe $U = \{0, 1, ..., m-1\}$ is supposed to be stored in a table of size n with indices $T = \{0, 1, ..., n-1\}$.
 - Collisions are resolved using auxiliary data structure.
- What we need is a hash function $h: U \to T$ with the following main requirements:
 - The hash function should minimize the number of collisions.
 - ② The space used should be proportional to the number of keys stored. (i.e., $n \approx |S|$)
- Claim 1: If m > n, then for any h there exists a key set S such that h has collision w.r.t. S (i.e., $\exists x, y \in S, h(x) = h(y)$)
- Claim 2: For any fixed key set S such that $|S| \le n$, there exists a hash function such that h has no collisions w.r.t. S.
- The issue is that the key set *S* is not known a-priori. That is, before using the data structure.
- Question: How do we solve this problem then?

- How do we design a good hash function?
- A set S of keys from a universe $U = \{0, 1, ..., m-1\}$ is supposed to be stored in a table of size n with indices $T = \{0, 1, ..., n-1\}$.
 - Collisions are resolved using auxiliary data structure.
- What we need is a hash function $h: U \to T$ with the following main requirements:
 - **1** The hash function should minimize the number of collisions.
 - ② The space used should be proportional to the number of keys stored. (i.e., $n \approx |S|$)
- Claim 1: If m > n, then for any h there exists a key set S such that h has collision w.r.t. S (i.e., $\exists x, y \in S, h(x) = h(y)$)
- Claim 2: For any fixed key set S such that $|S| \le n$, there exists a hash function such that h has no collisions w.r.t. S.
- The issue is that the key set *S* is not known a-priori. That is, before using the data structure.
- Question: How do we solve this problem then?
 - Randomly select a hash function from a family *H* of hash functions.

- How do we design a good hash function?
- A set S of keys from a universe $U = \{0, 1, ..., m-1\}$ is supposed to be stored in a table of size n with indices $T = \{0, 1, ..., n-1\}$.
 - Collisions are resolved using auxiliary data structure.
- What we need is a hash function h: U → T with the following main requirements:
 - 1 The hash function should minimize the number of collisions.
 - ② The space used should be proportional to the number of keys stored. (i.e., $n \approx |S|$)
- The issue is that the key set S is not known a-priori. That is, before using the data structure.
- Question: How do we solve this problem then?
 - Randomly select a hash function from a family *H* of hash functions.

Definition (2-universality)

$$\forall x, y \in U, x \neq y, \mathbf{Pr}_{h \leftarrow H}[h(x) = h(y)] \leq \frac{1}{n}.$$

A hash function family H is said to be 2-universal iff:

$$\forall x, y \in U, x \neq y, \mathbf{Pr}_{h \leftarrow H}[h(x) = h(y)] \leq \frac{1}{n}.$$

• Theorem: Consider hashing using a 2-universal hash function family. Consider t insert operations, the expected cost of each operation is at most (1 + t/n).

$$\forall x, y \in U, x \neq y, \mathbf{Pr}_{h \leftarrow H}[h(x) = h(y)] \leq \frac{1}{n}.$$

- Theorem: Consider hashing using a 2-universal hash function family. Consider t insert operations, the expected cost of each operation is at most (1 + t/n).
 - Proof sketch: Consider any key x. The expected number of keys in location h(x) is at most t/n.
- Question: Can you think of a 2-universal hash function family?

$$\forall x, y \in U, x \neq y, \mathbf{Pr}_{h \leftarrow H}[h(x) = h(y)] \leq \frac{1}{n}.$$

- Theorem: Consider hashing using a 2-universal hash function family. Consider t insert operations, the expected cost of each operation is at most (1 + t/n).
 - Proof sketch: Consider any key x. The expected number of keys in location h(x) is at most t/n.
- Question: Can you think of a 2-universal hash function family?
 - Simple answer: The set of all functions from U to T.
 - Do you see any issues with using this hash function family?

$$\forall x, y \in U, x \neq y, \mathbf{Pr}_{h \leftarrow H}[h(x) = h(y)] \leq \frac{1}{n}.$$

- Theorem: Consider hashing using a 2-universal hash function family. Consider t insert operations, the expected cost of each operation is at most (1 + t/n).
 - Proof sketch: Consider any key x. The expected number of keys in location h(x) is at most t/n.
- Question: Can you think of a 2-universal hash function family?
 - Simple answer: The set of all functions from U to T.
 - Do you see any issues with using this hash function family? The description of any hash function from this family is large.
 - Question: Can we design a more compact hash function family?

$$\forall x, y \in U, x \neq y, \mathbf{Pr}_{h \leftarrow H}[h(x) = h(y)] \leq \frac{1}{n}.$$

- Theorem: Consider hashing using a 2-universal hash function family. Consider t insert operations, the expected cost of each operation is at most (1 + t/n).
- A compact 2-universal hash function family:
 - Let $m \le p \le 2m$.
 - $H = \{h_{a,b} | a \in \{1, ..., p-1\}, b \in \{0, ..., p-1\}\}$ and $h_{a,b}(x) = ((ax + b) \mod p) \mod n$.
 - How many functions does H have?

$$\forall x, y \in U, x \neq y, \mathbf{Pr}_{h \leftarrow H}[h(x) = h(y)] \leq \frac{1}{n}.$$

- Theorem: Consider hashing using a 2-universal hash function family. Consider t insert operations, the expected cost of each operation is at most (1 + t/n).
- A compact 2-universal hash function family:
 - Let $m \le p \le 2m$.
 - $H = \{h_{a,b} | a \in \{1, ..., p-1\}, b \in \{0, ..., p-1\}\}$ and $h_{a,b}(x) = ((ax + b) \mod p) \mod n$.
 - How many functions does H have? p(p-1)

$$\forall x, y \in U, x \neq y, \mathbf{Pr}_{h \leftarrow H}[h(x) = h(y)] \leq \frac{1}{n}.$$

- Theorem: Consider hashing using a 2-universal hash function family. Consider t insert operations, the expected cost of each operation is at most (1 + t/n).
- A compact 2-universal hash function family:
 - Let $m \le p \le 2m$.
 - $H = \{h_{a,b} | a \in \{1, ..., p-1\}, b \in \{0, ..., p-1\}\}$ and $h_{a,b}(x) = ((ax + b) \mod p) \mod n$.
 - How many functions does H have? p(p-1)
 - Theorem: H is 2-universal.

$$\forall x, y \in U, x \neq y, \mathbf{Pr}_{h \leftarrow H}[h(x) = h(y)] \leq \frac{1}{n}.$$

- Theorem: Consider hashing using a 2-universal hash function family. Consider t insert operations, the expected cost of each operation is at most (1 + t/n).
- A compact 2-universal hash function family:
 - Let $m \le p \le 2m$.
 - $H = \{h_{a,b} | a \in \{1, ..., p-1\}, b \in \{0, ..., p-1\}\}$ and $h_{a,b}(x) = ((ax + b) \mod p) \mod n$.
 - Theorem: *H* is 2-universal.

• Theorem: *H* is 2-universal.

Proof sketch

- Let $g_{a,b}(x) = (ax + b) \mod p$. So, $h_{a,b}(x) = g_{a,b}(x) \mod n$.
- Consider any $x, y \in \{0, ..., p-1\}$ such that $x \neq y$.
- Claim 1: If $h_{a,b}(x) = h_{a,b}(y)$, then $g_{a,b}(x) = g_{a,b}(y) \mod n$.

• Theorem: *H* is 2-universal.

Proof sketch

- Let $g_{a,b}(x) = (ax + b) \mod p$. So, $h_{a,b}(x) = g_{a,b}(x) \mod n$.
- Consider any $x, y \in \{0, ..., p-1\}$ such that $x \neq y$.
- Claim 1: If $h_{a,b}(x) = h_{a,b}(y)$, then $g_{a,b}(x) = g_{a,b}(y) \mod n$.
- Claim 2: For all $\alpha, \beta \in \{0, ..., p-1\}$:

$$\Pr[g_{a,b}(x) = \alpha \text{ and } g_{a,b}(y) = \beta] = \begin{cases} 0 & \text{if } \alpha = \beta \\ \frac{1}{p(p-1)} & \text{otherwise} \end{cases}$$

• Theorem: *H* is 2-universal.

Proof sketch

- Let $g_{a,b}(x) = (ax + b) \mod p$. So, $h_{a,b}(x) = g_{a,b}(x) \mod n$.
- Consider any $x, y \in \{0, ..., p-1\}$ such that $x \neq y$.
- Claim 1: If $h_{a,b}(x) = h_{a,b}(y)$, then $g_{a,b}(x) = g_{a,b}(y) \mod n$.
- Claim 2: For all $\alpha, \beta \in \{0, ..., p-1\}$:

$$\Pr[g_{a,b}(x) = \alpha \text{ and } g_{a,b}(y) = \beta] = \begin{cases} 0 & \text{if } \alpha = \beta \\ \frac{1}{\rho(\rho-1)} & \text{otherwise} \end{cases}$$

Claim 3: We have:

$$\Pr[h_{a,b}(x) = h_{a,b}(y)] = \frac{|\{(\alpha,\beta) : \alpha \neq \beta \text{ and } \alpha \equiv \beta \mod n\}|}{p(p-1)} \leq \frac{1}{n}.$$

End