CSL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Relations

- Relation are mathematical structures used to represent relationships between elements of sets.
- These are just subset of cartesian product of sets.

Definition (Binary relation)

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

- We use a R b to denote $(a, b) \in R$ and $a \quad R b$ to denote $(A, b) \notin R$.
- Relation are mathematical structures used to represent relationships between elements of sets.
- These are just subset of cartesian product of sets.

Definition (Binary relation)

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

- We use a R b to denote $(a, b) \in R$ and a $R b$ to denote $(A, b) \notin R$.
- Example: Let A be the set of cities and B be the set of states. $\overline{\text { Consider }}$ the relation R denoting "is in state". So, $(a, b) \in R$ iff city a is in state b. So, (Lucknow, $U P) \in R$.
- Relation are mathematical structures used to represent relationships between elements of sets.
- These are just subset of cartesian product of sets.

Definition (Binary relation)

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

- Functions are special cases of relations where every element of A is the first element of an ordered pair in exactly one pair.
- Relation are mathematical structures used to represent relationships between elements of sets.
- These are just subset of cartesian product of sets.

Definition (Binary relation)

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

Definition (Relation on a set)

A relation on a set A is a relation from A to A.

- Question: Let A be the set $\{1,2,3,4\}$. Which ordered pairs are in the relation $R=\{(a, b) \mid a$ divides $b\}$?

Definition (Binary relation)

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

Definition (Relation on a set)

A relation on a set A is a relation from A to A.

- Question: Let A be the set $\{1,2,3,4\}$. Which ordered pairs are in the relation $R=\{(a, b) \mid a$ divides $b\}$?
- $R=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$

Definition (Binary relation)

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

Definition (Relation on a set)

A relation on a set A is a relation from A to A.

- Question: Let A be the set $\{1,2,3,4\}$. Which ordered pairs are in the relation $R=\{(a, b) \mid a$ divides $b\}$?

$$
\text { - } R=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}
$$

- How many relations are there on a set with n elements?

Definition (Binary relation)

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

Definition (Relation on a set)

A relation on a set A is a relation from A to A.

- Question: Let A be the set $\{1,2,3,4\}$. Which ordered pairs are in the relation $R=\{(a, b) \mid a$ divides $b\}$?
- $R=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$
- How many relations are there on a set with n elements?
- $2^{n^{2}}$

Definition (Reflexive)

A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Definition (Symmetric and antisymmetric)

A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$. A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then $a=b$ is called antisymmetric.

Definition (Reflexive)

A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Definition (Symmetric and antisymmetric)

A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$. A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then $a=b$ is called antisymmetric.

- Question: Is the "divides" relation on the set of positive integers symmetric? Is it antisymmetric?

Relations
 Properties of relations

Definition (Reflexive)

A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Definition (Symmetric and antisymmetric)

A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$. A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then $a=b$ is called antisymmetric.

Definition (Transitive)

A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

Relations
 Properties of relations

Definition (Reflexive)

A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Definition (Symmetric and antisymmetric)

A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$. A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then $a=b$ is called antisymmetric.

Definition (Transitive)

A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

- Question: Is the "divides" relation on the set of positive integers transitive?
- Question: How many reflexive relations are there on a set with n elements?

Relations

Combining relations

- Since relations from A to B are subsets of $A \times B$, two relations from A to B can be combined in any way two sets can be combined.
- Question: Let R_{1} be the "less than" relation on the set of real numbers and let R_{2} be the "greater than" relation on the set of real numbers. What are:
(1) $R_{1} \cup R_{2}=$?
(2) $R_{1} \cap R_{2}=$?
(3) $R_{1}-R_{2}=$?
(4) $R_{2}-R_{1}=$?
(5) $R_{1} \oplus R_{2}=$?

Relations

Combining relations

- Since relations from A to B are subsets of $A \times B$, two relations from A to B can be combined in any way two sets can be combined.
- Question: Let R_{1} be the "less than" relation on the set of real numbers and let R_{2} be the "greater than" relation on the set of real numbers. What are:
(1) $R_{1} \cup R_{2}=\{(x, y) \mid x \neq y\}$
(2) $R_{1} \cap R_{2}=\emptyset$
(3) $R_{1}-R_{2}=R_{1}$
(4) $R_{2}-R_{1}=R_{2}$
(5) $R_{1} \oplus R_{2}=\{(x, y) \mid x \neq y\}$

Relations

Combining relations

Definition (Composite)

Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A, c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

Relations

Combining relations

Definition (Composite)

Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A, c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

- Question: Let $A=\{1,2,3\}, B=\{1,2,3,4\}, C=\{0,1,2\}$, $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$, and
$S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. What is $S \circ R$?

Relations

Combining relations

Definition (Composite)

Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A, c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

- Question: Let $A=\{1,2,3\}, B=\{1,2,3,4\}, C=\{0,1,2\}$, $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$, and $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. What is $S \circ R$?
- $S \circ R=\{(1,0),(1,1),(2,1),(2,2),(3,0),(3,1)\}$

Relations

Combining relations

Definition (Composite)

Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A, c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

- Question: Let A be the set of all people and let R denote the "is parent" relationship. What relationship does $R \circ R$ capture?

Relations

Combining relations

Definition (Composite)

Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A, c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

Definition

Let R be a relation on the set A. The powers $R^{n}, n=1,2,3, \ldots$ are defined recursively by $R^{1}=R$ and $R^{n+1}=R^{n} \circ R$.

Relations

Combining relations

Definition (Composite)

Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A, c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

Definition

Let R be a relation on the set A. The powers $R^{n}, n=1,2,3, \ldots$ are defined recursively by $R^{1}=R$ and $R^{n+1}=R^{n} \circ R$.

- Question: Let $R=\{(1,1),(2,1),(3,2),(4,3)\}$. Find the powers $R^{n}, n=2,3,4, \ldots$.

Relations

Combining relations

Definition (Composite)

Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A, c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

Definition

Let R be a relation on the set A. The powers $R^{n}, n=1,2,3, \ldots$ are defined recursively by $R^{1}=R$ and $R^{n+1}=R^{n} \circ R$.

Theorem

A relation R on a set A is transitive if and only if $R^{n} \subseteq R$ for $n=1,2,3, \ldots$

Relations

n-ary relations and applications

Definition (n-ary relation)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be sets. An n-ary relation on these sets is a subset of $A_{1} \times A_{2} \times \ldots \times A_{n}$. The sets $A_{1}, A_{2}, \ldots, A_{n}$ are called the domains of the relation, and n is called its degree.

- Used in relational databases.

Relations

Representing relations

- The following two methods are used for representing relations:
(1) Matrices.
(2) Directed graphs.

Relations

Representing relations

- The following two methods are used for representing relations:
(1) Matrices.
(2) Directed graphs.

Representation using Matrices

Consider a relation R from a finite sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ to $B=\left\{b_{1}, \ldots, b_{n}\right\}$ (elements of these sets are listed in a particular but arbitrary order). The relation R is represented by the matrix $M=\left[m_{i j}\right]$, where

$$
m_{i j}= \begin{cases}1 & \text { if }\left(a_{i}, b_{j}\right) \in R, \\ 0 & \text { if }\left(a_{i}, b_{j}\right) \notin R\end{cases}
$$

- Show that: A relation R is antisymmetric iff for all $i \neq j$, either $m_{i j}=0$ or $m_{j i}=0$.

Relations

Representing relations

- The following two methods are used for representing relations:
(1) Matrices.
(2) Directed graphs.

Representation using Matrices

Consider a relation R from a finite sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ to $B=\left\{b_{1}, \ldots, b_{n}\right\}$ (elements of these sets are listed in a particular but arbitrary order). The relation R is represented by the matrix $M=\left[m_{i j}\right]$, where

$$
m_{i j}= \begin{cases}1 & \text { if }\left(a_{i}, b_{j}\right) \in R \\ 0 & \text { if }\left(a_{i}, b_{j}\right) \notin R\end{cases}
$$

- Show that: A relation R is antisymmetric iff for all $i \neq j$, either $m_{i j}=0$ or $m_{j i}=0$.
- Show that: $M_{R_{1} \cup R_{2}}=M_{R_{1}} \vee M_{R_{2}}$ and $M_{R_{1} \cap R_{2}}=M_{R_{1}} \wedge M_{R_{2}}$.

Relations

Representing relations

- The following two methods are used for representing relations:
(1) Matrices.
(2) Directed graphs.

Representation using Matrices

Consider a relation R from a finite sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ to $B=\left\{b_{1}, \ldots, b_{n}\right\}$ (elements of these sets are listed in a particular but arbitrary order). The relation R is represented by the matrix
$M=\left[m_{i j}\right]$, where

$$
m_{i j}= \begin{cases}1 & \text { if }\left(a_{i}, b_{j}\right) \in R \\ 0 & \text { if }\left(a_{i}, b_{j}\right) \notin R\end{cases}
$$

- Show that: A relation R is antisymmetric iff for all $i \neq j$, either $m_{i j}=0$ or $m_{j i}=0$.
- Show that: $M_{R_{1} \cup R_{2}}=M_{R_{1}} \vee M_{R_{2}}$ and $M_{R_{1} \cap R_{2}}=M_{R_{1}} \wedge M_{R_{2}}$.
- Question: Find the matrix representing R^{2}, when the matrix representing R is

$$
M_{R}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Relations

Representing relations

- The following two methods are used for representing relations:
(1) Matrices.
(2) Directed graphs.

Representation using directed graphs

A directed graph or digraph consists of a set V of vertices (or nodes) together with a set E or ordered pairs of elements of V called edges (or arcs). The vertex a is called the initial vertex of the edge (a, b) and the vertex b is called the terminal vertex of this edge.

- Determine whether the relation for the directed graph shown below is reflexive, symmetric, antisymmetric, and/or transitive.

Relations

Closure of relations

Closure

A relation S on a set A is called the closure of another relation R on A with respect to property P if S has property P, S contains R, and S is a subset of every relation with property P containing R.

- Question: What is the reflexive closure of any relation R on a set A?

Relations

Closure of relations

Closure

A relation S on a set A is called the closure of another relation R on A with respect to property P if S has property P, S contains R, and S is a subset of every relation with property P containing R.

- Question: What is the reflexive closure of any relation R on a set A ?
- Let $\Delta=\{(a, a) \mid a \in A\}$
- Reflexive closure S of R is $S=R \cup \Delta$

Relations

Closure of relations

Closure

A relation S on a set A is called the closure of another relation R on A with respect to property P if S has property P, S contains R, and S is a subset of every relation with property P containing R.

- Question: What is the reflexive closure of any relation R on a set A ?
- Let $\Delta=\{(a, a) \mid a \in A\}$
- Reflexive closure S of R is $S=R \cup \Delta$
- Question: What is the symmetric closure of any relation R on a set A ?
- Let $R^{-1}=\{(b, a) \mid(a, b) \in R\}$
- Symmetric closure S of R is $S=R \cup R^{-1}$.

Relations

Closure of relations

Closure

A relation S on a set A is called the closure of another relation R on A with respect to property P if S has property P, S contains R, and S is a subset of every relation with property P containing R.

- Question: What is the reflexive closure of any relation R on a set
- Let $\Delta=\{(a, a) \mid a \in A\}$
- Reflexive closure S of R is $S=R \cup \Delta$
- Question: What is the symmetric closure of any relation R on a set A ?
- Let $R^{-1}=\{(b, a) \mid(a, b) \in R\}$
- Symmetric closure S of R is $S=R \cup R^{-1}$.
- Question: How do we find the transitive closure of any relation R on set A ?
- Consider a relation $R=\{(1,3),(1,4),(2,1),(3,2)\}$ on set $A=\{1,2,3,4\}$.
- There is an immediate need to add $(1,2),(2,3),(2,4),(3,1)$ for transitivity.

Relations

Closure of relations

Closure

A relation S on a set A is called the closure of another relation R on A with respect to property P if S has property P, S contains R, and S is a subset of every relation with property P containing R.

- Question: What is the reflexive closure of any relation R on a set
- Let $\Delta=\{(a, a) \mid a \in A\}$
- Reflexive closure S of R is $S=R \cup \Delta$
- Question: What is the symmetric closure of any relation R on a set A ?
- Let $R^{-1}=\{(b, a) \mid(a, b) \in A\}$
- Symmetric closure S of R is $S=R \cup R^{-1}$.
- Question: How do we find the transitive closure of any relation R on set A ?
- Consider a relation $R=\{(1,3),(1,4),(2,1),(3,2)\}$ on set $A=\{1,2,3,4\}$.
- There is an immediate need to add $(1,2),(2,3),(2,4),(3,1)$ for transitivity.
- Question: Does the resulting relation become transitive after adding the above?

Relations

Closure of relations

- Question: How do we find the transitive closure of any relation R on set A ?

Definition (Path/cycle in directed graph)

A path from a to b in the directed graph G is a sequence of edges $\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{n-1}, x_{n}\right)$ in G, where n is a non-negative integer, and $x_{0}=a$ and $x_{n}=b$. This path is denoted by $x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}$ and has a length n. We view the empty set of edges as a path from a to a. A path of length $n \geq 1$ that begins and ends at the same vertex is called a circuit or cycle.

- The concept of path and cycles also applies to relations (since relations can be represented as digraphs).

Relations

Closure of relations

- Question: How do we find the transitive closure of any relation R on set A ?

Definition (Path/cycle in directed graph)

A path from a to b in the directed graph G is a sequence of edges $\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{n-1}, x_{n}\right)$ in G, where n is a non-negative integer, and $x_{0}=a$ and $x_{n}=b$. This path is denoted by $x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}$ and has a length n. We view the empty set of edges as a path from a to a. A path of length $n \geq 1$ that begins and ends at the same vertex is called a circuit or cycle.

- The concept of path and cycles also applies to relations (since relations can be represented as digraphs).

Theorem

Let R be a relation on a set A. There is a path of length n, where n is a positive integer, from a to b if and only if $(a, b) \in R^{n}$.

Relations

Closure of relations

- Question: How do we find the transitive closure of any relation R on set A ?

Theorem

Let R be a relation on a set A. There is a path of length n, where n is a positive integer, from a to b if and only if $(a, b) \in R^{n}$.

Definition (Connectivity relation)

Let R be a relation on a set A. The connectivity relation R^{*} consists of the pairs (a, b) such that there is a path of length at least one from a to b in R.

- Claim: $R^{*}=\cup_{n=1}^{\infty} R^{n}$.

Relations

Closure of relations

- Question: How do we find the transitive closure of any relation R on set A ?

Theorem

Let R be a relation on a set A. There is a path of length n, where n is a positive integer, from a to b if and only if $(a, b) \in R^{n}$.

Definition (Connectivity relation)

Let R be a relation on a set A. The connectivity relation R^{*} consists of the pairs (a, b) such that there is a path of length at least one from a to b in R.

- Claim: $R^{*}=\cup_{n=1}^{\infty} R^{n}$.

Theorem

The transitive closure of a relation R equals the connectivity relation R^{*}.

End

