CSL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Ragesh Jaiswal, CSE, IIT Delhi CSL202: Discrete Mathematical Structures

Discrete Probability

E > < E >

Definition (Expectation)

The *expected value*, also called the *expectation* or *mean*, of the random variable X on the sample space S is equal to

$$\mathbf{E}[X] = \sum_{s \in S} p(s) \cdot X(s).$$

The *deviation* of X at $s \in S$ is $X(s) - \mathbf{E}[X]$, the difference between the value of X and the mean of X.

Definition (Expectation)

The *expected value*, also called the *expectation* or *mean*, of the random variable X on the sample space S is equal to

$$\mathsf{E}[X] = \sum_{s \in S} p(s) \cdot X(s).$$

The *deviation* of X at $s \in S$ is $X(s) - \mathbf{E}[X]$, the difference between the value of X and the mean of X.

• A fair coin is flipped three times. Let *S* be the sample space of the eight possible outcomes, and let *X* be the random variable that assigns to an outcome the number of heads in this outcome. What is the expected value of *X*?

Definition (Expectation)

The *expected value*, also called the *expectation* or *mean*, of the random variable X on the sample space S is equal to

$$\mathbf{E}[X] = \sum_{s \in S} p(s) \cdot X(s).$$

The *deviation* of X at $s \in S$ is $X(s) - \mathbf{E}[X]$, the difference between the value of X and the mean of X.

Theorem

If X is a random variable and $\Pr[X = r]$ is the probability that X = r, so that $\Pr[X = r] = \sum_{s \in S, X(s)=r} p(s)$, then

$$\mathbf{E}[X] = \sum_{r \in X(S)} \mathbf{Pr}[X = r] \cdot r.$$

Theorem

If X is a random variable and $\Pr[X = r]$ is the probability that X = r, so that $\Pr[X = r] = \sum_{s \in S, X(s) = r} p(s)$, then

$$\mathbf{E}[X] = \sum_{r \in X(S)} \mathbf{Pr}[X = r] \cdot r.$$

• What is the expected value of the sum of the numbers that appear when a pair of fair dice is rolled?

Theorem

The expected number of successes when n mutually independent Bernoulli trials are performed, where p is the probability of success on each trial, is np.

Theorem (Linearity of expectation)

If X_i , i = 1, 2, ..., n with n a positive integer, are random variables on S, and if a and b are real numbers, then (i) $\mathbf{E}[X_1 + X_2 + ... + X_n] = \mathbf{E}[X_1] + \mathbf{E}[X_2] + ... + \mathbf{E}[X_n]$, (ii) $\mathbf{E}[aX + b] = a \cdot \mathbf{E}[X] + b$.

ヨト イヨト イヨト

Theorem (Linearity of expectation)

If X_i , i = 1, 2, ..., n with n a positive integer, are random variables on S, and if a and b are real numbers, then (i) $\mathbf{E}[X_1 + X_2 + ... + X_n] = \mathbf{E}[X_1] + \mathbf{E}[X_2] + ... + \mathbf{E}[X_n]$, (ii) $\mathbf{E}[aX + b] = a \cdot \mathbf{E}[X] + b$.

- What is the expected value of the sum of the numbers that appear when a pair of fair dice is rolled?
- What is the expected value of the number of successes when *n* independent Bernoulli trials are performed, where *p* is the probability of success on each trial?

- Average-case complexity: Let the sample space *I* consist of all possible inputs to the algorithm. Let *X* be a random variable denoting the running time of the algorithm. Then the average-case complexity of the algorithm is $\mathbf{E}[X] = \sum_{i \in I} p(i) \cdot X(i).$
- What is the average-case complexity of insertion sort if we just count the number of comparisons?

Definition (Geometric distribution)

A random variable X has a geometric distribution with parameter p if $\Pr[X = k] = (1 - p)^{k-1}p$ for k = 1, 2, 3, ..., where p is a real number with $0 \le p \le 1$.

• Example: Suppose that the probability that a coin comes up tails is *p*. This coin is flipped repeatedly until it comes up tails. What is the expected number of flips until this coin comes up tails?

Theorem

If the random variable X has the geometric distribution with parameter p, then $\mathbf{E}[X] = 1/p$.

Definition (Independent random variables)

The random variables X and Y on a sample space S are independent if

$$\Pr[X = r_1 \text{ and } Y = r_2] = \Pr[X = r_1] \cdot \Pr[Y = r_2],$$

or in other words, if the probability that $X = r_1$ and $Y = r_2$ equals the product of the probabilities that $X = r_1$ and $Y = r_2$, for all real numbers r_1 and r_2 .

• Example: Let X₁ and X₂ be the random variable denoting the number that appears on two dice when rolled. Are X₁ and X₂ independent?

Definition (Independent random variables)

The random variables X and Y on a sample space S are independent if

$$\mathbf{Pr}[X = r_1 \text{ and } Y = r_2] = \mathbf{Pr}[X = r_1] \cdot \mathbf{Pr}[Y = r_2],$$

or in other words, if the probability that $X = r_1$ and $Y = r_2$ equals the product of the probabilities that $X = r_1$ and $Y = r_2$, for all real numbers r_1 and r_2 .

Theorem

If X and Y are independent random variables on a sample space S, then $\mathbf{E}(XY) = \mathbf{E}(X) \cdot \mathbf{E}(Y)$.

Theorem

If X and Y are independent random variables on a sample space S, then $\mathbf{E}(XY) = \mathbf{E}(X) \cdot \mathbf{E}(Y)$.

• Does the above theorem hold for non-independent random variables?

• • = • • = •

Definition (Variance)

Let X be a random variable on a sample space S. The variance of X, denoted by Var[X], is

$$\operatorname{Var}[X] = \sum_{s \in S} (X(s) - \operatorname{E}[X])^2 \cdot p(s).$$

That is, **Var**[X] is the weighted average of the square of the deviation of X. The *standard deviation* of X, denoted by $\sigma[X]$ is defined to be $\sqrt{\text{Var}[X]}$.

Theorem

If X is a random variable on a sample space S, then $Var[X] = E[X^2] - (E[X])^2$.

Definition (Variance)

Let X be a random variable on a sample space S. The variance of X, denoted by $\operatorname{Var}[X]$, is $\operatorname{Var}[X] = \sum_{s \in S} (X(s) - \mathbf{E}[X])^2 \cdot p(s)$. That is, $\operatorname{Var}[X]$ is the weighted average of the square of the deviation of X. The standard deviation of X, denoted by $\sigma[X]$ is defined to be $\sqrt{\operatorname{Var}[X]}$.

Theorem

If X is a random variable on a sample space S, then $Var[X] = E[X^2] - (E[X])^2$.

Theorem

If X is a random variable on a sample space S and $\mathbf{E}[X] = \mu$, then $\operatorname{Var}[X] = \mathbf{E}[(X - \mu)^2]$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

If X is a random variable on a sample space S, then $Var[X] = E[X^2] - (E[X])^2$.

Theorem

If X is a random variable on a sample space S and $\mathbf{E}[X] = \mu$, then $\operatorname{Var}[X] = \mathbf{E}[(X - \mu)^2]$.

• What is the variance of the random variable X, where X is the number that comes up when a fair die is rolled?

Theorem (Bienayme's Formula)

If X and Y are two independent random variables on a sample space S, then Var[X + Y] = Var[X] + Var[Y]. Furthermore, if $X_i, i = 1, 2, ..., n$, with n a positive integer, are pairwise independent random variables on S, then $Var[X_1 + X_2 + ... + X_n] = Var[X_1] + Var[X_2] + ... + Var[X_n]$.

• What is the variance of the number of successes when *n* independent Bernoulli trials are performed, where, on each trial, *p* is the probability of success and *q* is the probability of failure?

Theorem (Markov's inequality)

Let X be a non-negative random variable on a sample space and a be a positive real number. Then

 $\Pr[X \ge a] \le \mathbb{E}[X]/a.$

Theorem (Markov's inequality)

Let X be a non-negative random variable on a sample space and a be a positive real number. Then

$\Pr[X \ge a] \le \mathbb{E}[X]/a.$

Theorem (Chebychev's inequality)

Let X be a random variable on a sample space and a be a positive real number. Then

$$\Pr[|X - \mathsf{E}[X]| \ge a] \le \operatorname{Var}[X]/a^2.$$

You sample r items with replacement from a collection of n distinct items. What is the probability that two items are the same?

• Let X_{ij} be an indicator random variable that is 1 if the i^{th} and the j^{th} sample are the same and 0 otherwise.

• Lemma 1:
$$\mathbf{E}[X_{ij}] = 1/n$$
.

医子宫下子 医下

You sample r items with replacement from a collection of n distinct items. What is the probability that two items are the same?

- Let X_{ij} be an indicator random variable that is 1 if the i^{th} and the j^{th} sample are the same and 0 otherwise.
- <u>Lemma 1</u>: $\mathbf{E}[X_{ij}] = 1/n$.
- Let $X = \sum_{i < j} X_{ij}$. Note that X denotes the number of distinct pairs of samples that are the same.

• Lemma 2:
$$\mathbf{E}[X] = \frac{r(r-1)}{2n}$$

You sample r items with replacement from a collection of n distinct items. What is the probability that two items are the same?

- Let X_{ij} be an indicator random variable that is 1 if the i^{th} and the j^{th} sample are the same and 0 otherwise.
- <u>Lemma 1</u>: $\mathbf{E}[X_{ij}] = 1/n$.
- Let $X = \sum_{i < j} X_{ij}$. Note that X denotes the number of distinct pairs of samples that are the same.
- Lemma 2: $\mathbf{E}[X] = \frac{r(r-1)}{2n}$.

• If
$$r \approx c \cdot \sqrt{2n}$$
, then $\mathbf{E}[X] = 10$.

• Lemma 3:
$$\operatorname{Var}[X_{ij}] = \frac{n-1}{n^2}$$

You sample r items with replacement from a collection of n distinct items. What is the probability that two items are the same?

- Let X_{ij} be an indicator random variable that is 1 if the i^{th} and the j^{th} sample are the same and 0 otherwise.
- <u>Lemma 1</u>: $\mathbf{E}[X_{ij}] = 1/n$.
- Let $X = \sum_{i < j} X_{ij}$. Note that X denotes the number of distinct pairs of samples that are the same.
- Lemma 2: $\mathbf{E}[X] = \frac{r(r-1)}{2n}$.
- If $r \approx c \cdot \sqrt{2n}$, then $\mathbf{E}[X] = 10$.
- Lemma 3: $\operatorname{Var}[X_{ij}] = \frac{n-1}{n^2}$.
- Lemma 4: $\operatorname{Var}[X] = \sum_{i < j} \operatorname{Var}[X_{ij}] = \frac{r(r-1)(n-1)}{2n^2}$.

You sample r items with replacement from a collection of n distinct items. What is the probability that two items are the same?

- Let X_{ij} be an indicator random variable that is 1 if the i^{th} and the j^{th} sample are the same and 0 otherwise.
- <u>Lemma 1</u>: $\mathbf{E}[X_{ij}] = 1/n$.
- Let $X = \sum_{i < j} X_{ij}$. Note that X denotes the number of distinct pairs of samples that are the same.

• Lemma 2:
$$\mathbf{E}[X] = \frac{r(r-1)}{2n}$$

• If
$$r \approx c \cdot \sqrt{2n}$$
, then $\mathbf{E}[X] = 10$.

- Lemma 3: $\operatorname{Var}[X_{ij}] = \frac{n-1}{n^2}$.
- Lemma 4: $\operatorname{Var}[X] = \sum_{i < j} \operatorname{Var}[X_{ij}] = \frac{r(r-1)(n-1)}{2n^2}$.
- So, $\operatorname{Var}[X] = 10 \cdot (1 1/n)$ when $r \approx c \cdot \sqrt{2n}$.
- Lemma <u>5</u>: **Pr**[X < 1] < 1/4.

Theorem (Chernoff-bound)

Let $X_1, ..., X_n$ be independent, 0/1 random variables, and let $p_i = \mathbf{E}[X_i]$ for all i = 1, 2, ..., n. Let $X = X_1 + X_2 + ... + X_n$ and let $\mu = \mathbf{E}[X]$. Let $\delta > 0$ be any real number. Then

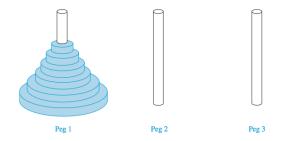
$$\begin{aligned} &\mathsf{Pr}[X > (1+\delta) \cdot \mu] &\leq e^{-f(\delta) \cdot \mu}, \text{ and} \\ &\mathsf{Pr}[X < (1-\delta) \cdot \mu] &\leq e^{-g(\delta) \cdot \mu} \end{aligned}$$

where $f(\delta) = (1 + \delta) \cdot \ln(1 + \delta) - \delta$ and $g(\delta) = (1 - \delta) \cdot \ln(1 - \delta) + \delta$.

• For all
$$\delta > 0, g(\delta) \ge \delta^2/2$$
 and $f(\delta) \ge \frac{\delta^2}{2+\delta}$.

Advanced Counting Techniques

• <u>Tower of Hanoi</u>: Let H_n denote the number of moves needed to solve the Tower of Hanoi problem with *n* disks. Set up a recurrence relation for the sequence $\{H_n\}$.



• Find a recurrence relation and give initial conditions for the number of bit strings of length *n* that do not have two consecutive 0s. How many such bit strings are there of length five?

- Dynamic Programming: This is an algorithmic technique where a problem is recursively broken down into simpler overlapping subproblems, and the solution is computed using the solutions of the subproblems.
- Problem: Given a sequence of integers, find the length of the *longest increasing subsequence* of the given sequence.
 - Example: The longest increasing subsequence of the sequence (7,2,8,10,3,6,9,7) is (2,3,6,7) and its length is 4.

End

Ragesh Jaiswal, CSE, IIT Delhi CSL202: Discrete Mathematical Structures

・ロト ・部 ト ・ヨト ・ヨト