CSL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Discrete Probability

Discrete Probability

Expectation and Variance

Definition (Expectation)

The expected value, also called the expectation or mean, of the random variable X on the sample space S is equal to

$$
\mathbf{E}[X]=\sum_{s \in S} p(s) \cdot X(s)
$$

The deviation of X at $s \in S$ is $X(s)-\mathbf{E}[X]$, the difference between the value of X and the mean of X.

Discrete Probability

Expectation and Variance

Definition (Expectation)

The expected value, also called the expectation or mean, of the random variable X on the sample space S is equal to

$$
\mathbf{E}[X]=\sum_{s \in S} p(s) \cdot X(s)
$$

The deviation of X at $s \in S$ is $X(s)-\mathbf{E}[X]$, the difference between the value of X and the mean of X.

- A fair coin is flipped three times. Let S be the sample space of the eight possible outcomes, and let X be the random variable that assigns to an outcome the number of heads in this outcome. What is the expected value of X ?

Discrete Probability

Expectation and Variance

Definition (Expectation)

The expected value, also called the expectation or mean, of the random variable X on the sample space S is equal to

$$
\mathbf{E}[X]=\sum_{s \in S} p(s) \cdot X(s) .
$$

The deviation of X at $s \in S$ is $X(s)-\mathbf{E}[X]$, the difference between the value of X and the mean of X.

Theorem

If X is a random variable and $\operatorname{Pr}[X=r]$ is the probability that $X=r$, so that $\operatorname{Pr}[X=r]=\sum_{s \in S, X(s)=r} p(s)$, then

$$
\mathbf{E}[X]=\sum_{r \in X(S)} \operatorname{Pr}[X=r] \cdot r .
$$

Discrete Probability

Expectation and Variance

Theorem

If X is a random variable and $\operatorname{Pr}[X=r]$ is the probability that $X=r$, so that $\operatorname{Pr}[X=r]=\sum_{s \in S, X(s)=r} p(s)$, then

$$
\mathbf{E}[X]=\sum_{r \in X(S)} \operatorname{Pr}[X=r] \cdot r
$$

- What is the expected value of the sum of the numbers that appear when a pair of fair dice is rolled?

Discrete Probability

Expectation and Variance

Theorem

The expected number of successes when n mutually independent Bernoulli trials are performed, where p is the probability of success on each trial, is $n p$.

Discrete Probability

Expectation and Variance

Theorem (Linearity of expectation)

If $X_{i}, i=1,2, \ldots, n$ with n a positive integer, are random variables on S, and if a and b are real numbers, then
(i) $\mathbf{E}\left[X_{1}+X_{2}+\ldots+X_{n}\right]=\mathbf{E}\left[X_{1}\right]+\mathbf{E}\left[X_{2}\right]+\ldots+\mathbf{E}\left[X_{n}\right]$, (ii) $\mathrm{E}[a X+b]=a \cdot \mathbf{E}[X]+b$.

Discrete Probability

Expectation and Variance

Theorem (Linearity of expectation)

If $X_{i}, i=1,2, \ldots, n$ with n a positive integer, are random variables on S, and if a and b are real numbers, then
(i) $\mathbf{E}\left[X_{1}+X_{2}+\ldots+X_{n}\right]=\mathbf{E}\left[X_{1}\right]+\mathbf{E}\left[X_{2}\right]+\ldots+\mathbf{E}\left[X_{n}\right]$,
(ii) $\mathbf{E}[a X+b]=a \cdot \mathbf{E}[X]+b$.

- What is the expected value of the sum of the numbers that appear when a pair of fair dice is rolled?
- What is the expected value of the number of successes when n independent Bernoulli trials are performed, where p is the probability of success on each trial?

Discrete Probability

Expectation and Variance

- Average-case complexity: Let the sample space / consist of all possible inputs to the algorithm. Let X be a random variable denoting the running time of the algorithm. Then the average-case complexity of the algorithm is

$$
\mathbf{E}[X]=\sum_{i \in I} p(i) \cdot X(i) .
$$

- What is the average-case complexity of insertion sort if we just count the number of comparisons?

Discrete Probability

Expectation and Variance

Definition (Geometric distribution)

A random variable X has a geometric distribution with parameter p if $\operatorname{Pr}[X=k]=(1-p)^{k-1} p$ for $k=1,2,3, \ldots$, where p is a real number with $0 \leq p \leq 1$.

- Example: Suppose that the probability that a coin comes up tails is p. This coin is flipped repeatedly until it comes up tails. What is the expected number of flips until this coin comes up tails?

Theorem

If the random variable X has the geometric distribution with parameter p, then $\mathbf{E}[X]=1 / p$.

Discrete Probability

Expectation and Variance

Definition (Independent random variables)

The random variables X and Y on a sample space S are independent if

$$
\operatorname{Pr}\left[X=r_{1} \text { and } Y=r_{2}\right]=\operatorname{Pr}\left[X=r_{1}\right] \cdot \operatorname{Pr}\left[Y=r_{2}\right]
$$

or in other words, if the probability that $X=r_{1}$ and $Y=r_{2}$ equals the product of the probabilities that $X=r_{1}$ and $Y=r_{2}$, for all real numbers r_{1} and r_{2}.

- Example: Let X_{1} and X_{2} be the random variable denoting the number that appears on two dice when rolled. Are X_{1} and X_{2} independent?

Discrete Probability

Expectation and Variance

Definition (Independent random variables)

The random variables X and Y on a sample space S are independent if

$$
\operatorname{Pr}\left[X=r_{1} \text { and } Y=r_{2}\right]=\operatorname{Pr}\left[X=r_{1}\right] \cdot \operatorname{Pr}\left[Y=r_{2}\right],
$$

or in other words, if the probability that $X=r_{1}$ and $Y=r_{2}$ equals the product of the probabilities that $X=r_{1}$ and $Y=r_{2}$, for all real numbers r_{1} and r_{2}.

Theorem

If X and Y are independent random variables on a sample space S, then $\mathbf{E}(X Y)=\mathbf{E}(X) \cdot \mathbf{E}(Y)$.

Discrete Probability

Expectation and Variance

Theorem

If X and Y are independent random variables on a sample space S, then $\mathbf{E}(X Y)=\mathbf{E}(X) \cdot \mathbf{E}(Y)$.

- Does the above theorem hold for non-independent random variables?

Discrete Probability

Expectation and Variance

Definition (Variance)

Let X be a random variable on a sample space S. The variance of X, denoted by $\operatorname{Var}[X]$, is

$$
\operatorname{Var}[X]=\sum_{s \in S}(X(s)-\mathbf{E}[X])^{2} \cdot p(s)
$$

That is, $\operatorname{Var}[X]$ is the weighted average of the square of the deviation of X. The standard deviation of X, denoted by $\sigma[X]$ is defined to be $\sqrt{\operatorname{Var}[X]}$.

Theorem

If X is a random variable on a sample space S, then $\operatorname{Var}[X]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}$.

Discrete Probability

Expectation and Variance

Definition (Variance)

Let X be a random variable on a sample space S. The variance of X, denoted by $\operatorname{Var}[X]$, is $\operatorname{Var}[X]=\sum_{s \in S}(X(s)-\mathbf{E}[X])^{2} \cdot p(s)$.
That is, $\operatorname{Var}[X]$ is the weighted average of the square of the deviation of X. The standard deviation of X, denoted by $\sigma[X]$ is defined to be $\sqrt{\operatorname{Var}[X]}$.

Theorem

If X is a random variable on a sample space S, then
$\operatorname{Var}[X]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}$.

Theorem

If X is a random variable on a sample space S and $\mathbf{E}[X]=\mu$, then $\operatorname{Var}[X]=\mathbf{E}\left[(X-\mu)^{2}\right]$.

Discrete Probability

Expectation and Variance

Theorem

If X is a random variable on a sample space S, then $\operatorname{Var}[X]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}$.

Theorem

If X is a random variable on a sample space S and $\mathbf{E}[X]=\mu$, then $\operatorname{Var}[X]=\mathbf{E}\left[(X-\mu)^{2}\right]$.

- What is the variance of the random variable X, where X is the number that comes up when a fair die is rolled?

Discrete Probability

Expectation and Variance

Theorem (Bienayme's Formula)

If X and Y are two independent random variables on a sample space S, then $\operatorname{Var}[X+Y]=\mathbf{V a r}[X]+\operatorname{Var}[Y]$. Furthermore, if $X_{i}, i=1,2, \ldots, n$, with n a positive integer, are pairwise independent random variables on S, then $\operatorname{Var}\left[X_{1}+X_{2}+\ldots+X_{n}\right]=\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[X_{2}\right]+\ldots+\operatorname{Var}\left[X_{n}\right]$.

- What is the variance of the number of successes when n independent Bernoulli trials are performed, where, on each trial, p is the probability of success and q is the probability of failure?

Discrete Probability
 Deviation from Expectation

Theorem (Markov's inequality)

Let X be a non-negative random variable on a sample space and a be a positive real number. Then

$$
\operatorname{Pr}[X \geq a] \leq \mathbf{E}[X] / a
$$

Discrete Probability

Deviation from Expectation

Theorem (Markov's inequality)

Let X be a non-negative random variable on a sample space and a be a positive real number. Then

$$
\operatorname{Pr}[X \geq a] \leq \mathbf{E}[X] / a
$$

Theorem (Chebychev's inequality)

Let X be a random variable on a sample space and a be a positive real number. Then

$$
\operatorname{Pr}[|X-\mathbf{E}[X]| \geq a] \leq \operatorname{Var}[X] / a^{2}
$$

Discrete Probability

Deviation from Expectation

Birthday Problem

You sample r items with replacement from a collection of n distinct items. What is the probability that two items are the same?

- Let $X_{i j}$ be an indicator random variable that is 1 if the $i^{\text {th }}$ and the $j^{\text {th }}$ sample are the same and 0 otherwise.
- Lemma 1: $\mathbf{E}\left[X_{i j}\right]=1 / n$.

Discrete Probability
 Deviation from Expectation

Birthday Problem

You sample r items with replacement from a collection of n distinct items. What is the probability that two items are the same?

- Let $X_{i j}$ be an indicator random variable that is 1 if the $i^{\text {th }}$ and the $j^{\text {th }}$ sample are the same and 0 otherwise.
- Lemma 1: $\mathrm{E}\left[X_{i j}\right]=1 / n$.
- Let $X=\sum_{i<j} X_{i j}$. Note that X denotes the number of distinct pairs of samples that are the same.
- Lemma 2: $\mathbf{E}[X]=\frac{r(r-1)}{2 n}$.

Discrete Probability
 Deviation from Expectation

Birthday Problem

You sample r items with replacement from a collection of n distinct items. What is the probability that two items are the same?

- Let $X_{i j}$ be an indicator random variable that is 1 if the $i^{\text {th }}$ and the $j^{\text {th }}$ sample are the same and 0 otherwise.
- Lemma 1: $\mathrm{E}\left[X_{i j}\right]=1 / n$.
- Let $X=\sum_{i<j} X_{i j}$. Note that X denotes the number of distinct pairs of samples that are the same.
- Lemma 2: $\mathbf{E}[X]=\frac{r(r-1)}{2 n}$.
- If $r \approx c \cdot \sqrt{2 n}$, then $\mathbf{E}[X]=10$.
- Lemma 3: $\operatorname{Var}\left[X_{i j}\right]=\frac{n-1}{n^{2}}$.

Discrete Probability
 Deviation from Expectation

Birthday Problem

You sample r items with replacement from a collection of n distinct items. What is the probability that two items are the same?

- Let $X_{i j}$ be an indicator random variable that is 1 if the $i^{\text {th }}$ and the $j^{\text {th }}$ sample are the same and 0 otherwise.
- Lemma 1: $\mathrm{E}\left[X_{i j}\right]=1 / n$.
- Let $X=\sum_{i<j} X_{i j}$. Note that X denotes the number of distinct pairs of samples that are the same.
- Lemma 2: $\mathbf{E}[X]=\frac{r(r-1)}{2 n}$.
- If $r \approx c \cdot \sqrt{2 n}$, then $\mathbf{E}[X]=10$.
- Lemma 3: $\operatorname{Var}\left[X_{i j}\right]=\frac{n-1}{n^{2}}$.
- Lemma 4: $\operatorname{Var}[X]=\sum_{i<j} \operatorname{Var}\left[X_{i j}\right]=\frac{r(r-1)(n-1)}{2 n^{2}}$.

Discrete Probability

Deviation from Expectation

Birthday Problem

You sample r items with replacement from a collection of n distinct items. What is the probability that two items are the same?

- Let $X_{i j}$ be an indicator random variable that is 1 if the $i^{\text {th }}$ and the $j^{\text {th }}$ sample are the same and 0 otherwise.
- Lemma 1: $\mathbf{E}\left[X_{i j}\right]=1 / n$.
- Let $X=\sum_{i<j} X_{i j}$. Note that X denotes the number of distinct pairs of samples that are the same.
- Lemma 2: $\mathbf{E}[X]=\frac{r(r-1)}{2 n}$.
- If $r \approx c \cdot \sqrt{2 n}$, then $\mathbf{E}[X]=10$.
- Lemma 3: $\operatorname{Var}\left[X_{i j}\right]=\frac{n-1}{n^{2}}$.
- Lemma 4: $\operatorname{Var}[X]=\sum_{i<j} \operatorname{Var}\left[X_{i j}\right]=\frac{r(r-1)(n-1)}{2 n^{2}}$.
- So, $\operatorname{Var}[X]=10 \cdot(1-1 / n)$ when $r \approx c \cdot \sqrt{2 n}$.
- Lemma 5: $\operatorname{Pr}[X<1]<1 / 4$.

Discrete Probability

Deviation from Expectation

Theorem (Chernoff-bound)

Let X_{1}, \ldots, X_{n} be independent, $0 / 1$ random variables, and let $p_{i}=\mathbf{E}\left[X_{i}\right]$ for all $i=1,2, \ldots, n$. Let $X=X_{1}+X_{2}+\ldots+X_{n}$ and let $\mu=\mathbf{E}[X]$. Let $\delta>0$ be any real number. Then

$$
\begin{aligned}
\operatorname{Pr}[X>(1+\delta) \cdot \mu] & \leq e^{-f(\delta) \cdot \mu}, \text { and } \\
\operatorname{Pr}[X<(1-\delta) \cdot \mu] & \leq e^{-g(\delta) \cdot \mu}
\end{aligned}
$$

where $f(\delta)=(1+\delta) \cdot \ln (1+\delta)-\delta$ and
$g(\delta)=(1-\delta) \cdot \ln (1-\delta)+\delta$.

- For all $\delta>0, g(\delta) \geq \delta^{2} / 2$ and $f(\delta) \geq \frac{\delta^{2}}{2+\delta}$.

Advanced Counting Techniques

Advanced Counting Techniques

- Tower of Hanoi: Let H_{n} denote the number of moves needed to solve the Tower of Hanoi problem with n disks. Set up a recurrence relation for the sequence $\left\{H_{n}\right\}$.

Peg 1

Peg 2

Peg 3

Advanced Counting Techniques Recurrence relations

- Find a recurrence relation and give initial conditions for the number of bit strings of length n that do not have two consecutive 0s. How many such bit strings are there of length five?

Advanced Counting Techniques

 Recurrence relations- Dynamic Programming: This is an algorithmic technique where a problem is recursively broken down into simpler overlapping subproblems, and the solution is computed using the solutions of the subproblems.
- Problem: Given a sequence of integers, find the length of the longest increasing subsequence of the given sequence.
- Example: The longest increasing subsequence of the sequence $(7,2,8,10,3,6,9,7)$ is $(2,3,6,7)$ and its length is 4.

End

