CSL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Discrete Probability

Discrete Probability
 Probabilistic Algorithms

- Probabilistic algorithms: Algorithms that make random choices at one or more steps.
- Monte Carlo Algorithms: Probabilistic algorithms for decision problems that always produces an answer. The answer may be incorrect with some small probability.
- Example: A sends 1 million apples to B. A has cleverly packed 1000 bad apples among these 1 million apples. How does B detect that A has sent 1 million good apples or not.

Discrete Probability

Probabilistic Method

Theorem (The Probabilistic Method)

If the probability that an element chosen at random from a S does not have a particular property is less than 1, there exists an element in S with this property.

- An existence proof based on the probabilistic method is nonconstructive because it does not find a particular element with the desired property.

Discrete Probability

Probabilistic Method

Theorem (The Probabilistic Method)

If the probability that an element chosen at random from a S does not have a particular property is less than 1, there exists an element in S with this property.

- Example: Ramsey number
- Assume that in a group of six people, each pair of individuals consists of two friends or two enemies. Show that there are either three mutual friends or three mutual enemies in the group.

Discrete Probability

Probabilistic Method

Theorem (The Probabilistic Method)

If the probability that an element chosen at random from a S does not have a particular property is less than 1, there exists an element in S with this property.

- Example: Ramsey number
- The Ramsey number $R(m, n)$, where m and n are positive integers greater than or equal to 2 , denotes the minimum number of people at a party such that there are either m mutual friends or n mutual enemies, assuming that every pair of people at the party are friends or enemies.

Discrete Probability

Probabilistic Method

Theorem (The Probabilistic Method)

If the probability that an element chosen at random from a S does not have a particular property is less than 1 , there exists an element in S with this property.

Definition (Ramsey number)

The Ramsey number $R(m, n)$, where m and n are positive integers greater than or equal to 2 , denotes the minimum number of people at a party such that there are either mutual friends or n mutual enemies, assuming that every pair of people at the party are friends or enemies.

Theorem

If k is an integer with $k \geq 2$, then $R(k, k) \geq 2^{k / 2}$.

Discrete Probability

Baye's Theorem

Theorem (Baye's Theorem)

Suppose that E and F are events from a sample space S such that $\operatorname{Pr}[E] \neq 0$ and $\operatorname{Pr}[F] \neq 0$. Then

$$
\operatorname{Pr}[F \mid E]=\frac{\operatorname{Pr}[E \mid F] \cdot \operatorname{Pr}[F]}{\operatorname{Pr}[E \mid F] \cdot \operatorname{Pr}[F]+\operatorname{Pr}[E \mid \bar{F}] \cdot \operatorname{Pr}[\bar{F}]}
$$

Discrete Probability

Baye's Theorem

Theorem (Baye's Theorem)

Suppose that E and F are events from a sample space S such that $\operatorname{Pr}[E] \neq 0$ and $\operatorname{Pr}[F] \neq 0$. Then

$$
\operatorname{Pr}[F \mid E]=\frac{\operatorname{Pr}[E \mid F] \cdot \operatorname{Pr}[F]}{\operatorname{Pr}[E \mid F] \cdot \operatorname{Pr}[F]+\operatorname{Pr}[E \mid \bar{F}] \cdot \operatorname{Pr}[\bar{F}]}
$$

- Example: We have two boxes. The first contains two green balls and seven red balls; the second contains four green balls and three red balls. Bob selects a ball by first choosing one of the two boxes at random. He then selects one of the balls in this box at random. If Bob has selected a red ball, what is the probability that he selected a ball from the first box?

Discrete Probability

Baye's Theorem

Theorem (Baye's Theorem)

Suppose that E and F are events from a sample space S such that $\operatorname{Pr}[E] \neq 0$ and $\operatorname{Pr}[F] \neq 0$. Then

$$
\operatorname{Pr}[F \mid E]=\frac{\operatorname{Pr}[E \mid F] \cdot \operatorname{Pr}[F]}{\operatorname{Pr}[E \mid F] \cdot \operatorname{Pr}[F]+\operatorname{Pr}[E \mid \bar{F}] \cdot \operatorname{Pr}[\bar{F}]}
$$

- Example: Suppose that one person in 100,000 has a particular rare disease for which there is a fairly accurate diagnostic test. This test is correct 99.0% of the time when given to a person selected at random who has the disease; it is correct 99.5% of the time when given to a person selected at random who does not have the disease. Given this information can we find
(a) the probability that a person who tests positive for the disease has the disease?
(b) the probability that a person who tests negative for the disease does not have the disease?

Discrete Probability

Baye's Theorem

Theorem (Baye's Theorem)

Suppose that E and F are events from a sample space S such that $\operatorname{Pr}[E] \neq 0$ and $\operatorname{Pr}[F] \neq 0$. Then

$$
\operatorname{Pr}[F \mid E]=\frac{\operatorname{Pr}[E \mid F] \cdot \operatorname{Pr}[F]}{\operatorname{Pr}[E \mid F] \cdot \operatorname{Pr}[F]+\operatorname{Pr}[E \mid \bar{F}] \cdot \operatorname{Pr}[\bar{F}]}
$$

- Other Application: Bayesian spam filtering.

Discrete Probability

Baye's Theorem

Theorem (Generalized Baye's Theorem)

Suppose that E is an event from a sample space S and that F_{1}, \ldots, F_{n} are mutually exclusive events such that $\cup_{i=1}^{n} F_{i}=S$. Assume that $\operatorname{Pr}[E] \neq 0$ and $\operatorname{Pr}\left[F_{i}\right] \neq 0$ for $i=1,2, \ldots$, n. Then

$$
\operatorname{Pr}\left[F_{j} \mid E\right]=\frac{\operatorname{Pr}\left[E \mid F_{j}\right] \cdot \operatorname{Pr}\left[F_{j}\right]}{\sum_{i=1}^{n} \operatorname{Pr}\left[E \mid F_{i}\right] \cdot \operatorname{Pr}\left[F_{i}\right]}
$$

End

