CSL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Counting

- What are we going to count?
- Objects with certain properties.
- Basic Counting Principles:
- The Product Rule: Suppose that a procedure can be broken down into a sequence of two tasks. If there are n_{1} ways to do the first task and for each of these ways of doing the first task, there are n_{2} ways to do the second task, then there are $n_{1} \cdot n_{2}$ ways to do the procedure.

Counting

Basic counting principles

- Basic Counting Principles:
- The Product Rule: Suppose that a procedure can be broken down into a sequence of two tasks. If there are n_{1} ways to do the first task and for each of these ways of doing the first task, there are n_{2} ways to do the second task, then there are $n_{1} \cdot n_{2}$ ways to do the procedure.
- Extended Product Rule: Suppose that a procedure is carried out by performing the tasks $T_{1}, T_{2}, \ldots, T_{m}$ in sequence. If each task $T_{i}, i=1,2, \ldots, n$, can be done in n_{i} ways, regardless of how the previous tasks were done, then there are $n_{1} \cdot n_{2} \ldots n_{m}$ ways to carry out the procedure.
- Can you argue the validity of the extended product rule using the product rule?

Basic counting principles

- Basic Counting Principles:
- The Product Rule: Examples
- How many functions are there from a set of m elements to a set of n elements?
- How many such one-one functions are there?

Counting

Basic counting principles

- Basic Counting Principles:
- The Product Rule:
- The Sum Rule: If a task can be done either in one of n_{1} ways or in one of n_{2} ways, where none of the set of n_{1} ways is the same as any of the set of n_{2} ways, then there are $n_{1}+n_{2}$ ways to do the task.
- The Extended Sum Rule: Suppose that a task can be done in one of n_{1} ways, in one of n_{2} ways, \ldots, , or in one of n_{m} ways, where none of the set of n_{i} ways of doing the task is the same as any of the set of n_{j} ways, for all pairs i and j with $1 \leq i<j \leq m$. Then the number of ways to do the task is $n_{1}+n_{2}+\ldots+n_{m}$.

Counting

Basic counting principles

- Basic Counting Principles:
- The Product Rule:
- The Sum Rule: Examples
- Each user on a computer system has a password, which is six to eight characters long, where each character is an uppercase letter or a digit. Each password must contain at least one digit. How many possible passwords are there?

Counting

Basic counting principles

- Basic Counting Principles:
- The Product Rule:
- The Sum Rule:
- The Subtraction Rule: If a task can be done in either n_{1} ways or n_{2} ways, then the number of ways to do the task is $n_{1}+n_{2}$ minus the number of ways to do the task that are common to the two different ways.
- The subtraction rule is also known as the principle of inclusion-exclusion, especially when it is used to count the number of elements in the union of two sets.
- $\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right|-\left|A_{1} \cap A_{2}\right|$.

Counting

Basic counting principles

- Basic Counting Principles:
- The Product Rule:
- The Sum Rule:
- The Subtraction Rule:
- The Division Rule: If f is a function from A to B where A and B are finite sets, and that for every value $y \in B$ there are exactly d values $x \in A$ such that $f(x)=y$ (in which case, we say that f is d-to-one), then $|B|=|A| / d$.
- Example: How many different ways are there to seat four people around a circular table, where two seatings are considered the same when each person has the same left neighbor and the same right neighbor?

Counting

Basic counting principles

- Basic Counting Principles:
- The Product Rule
- The Sum Rule
- The Subtraction Rule
- The Division Rule

Counting
 Tree Diagrams

- Tree diagrams: We use a branch to represent each possible choice. The possible outcomes are represented by the leaves.
- Example: A playoff between two teams consists of at most five games. The first team that wins three games wins the playoff. In how many different ways can the playoff occur?

FIGURE 3 Best Three Games Out of Five Playoffs.

Theorem (The Pigeonhole Principle)

If k is a positive integer and $k+1$ or more objects are placed into k boxes, then there is at least one box containing two or more of the objects.

Corollary

A function f from a set with $k+1$ or more elements to a set with k elements is not one-to-one.

Theorem (The Pigeonhole Principle)

If k is a positive integer and $k+1$ or more objects are placed into k boxes, then there is at least one box containing two or more of the objects.

Corollary

A function f from a set with $k+1$ or more elements to a set with k elements is not one-to-one.

- Show that for every integer n there is a multiple of n that has only 0 s and 1 s in its decimal expansion.

Theorem (The Generalized Pigeonhole Principle)

If N objects are placed into k boxes, then there is at least one box containing at least $\lceil N / k\rceil$ objects.

Theorem (The Generalized Pigeonhole Principle)

If N objects are placed into k boxes, then there is at least one box containing at least $\lceil N / k\rceil$ objects.

- What is the least number of area codes needed to guarantee that the 25 million phones in a state can be assigned distinct 10-digit telephone numbers? (Assume that telephone numbers are of the form NXX-NXX-XXXX, where the first three digits form the area code, N represents a digit from 2 to 9 inclusive, and X represents any digit.)
- Show that among any $n+1$ positive integers not exceeding $2 n$ there must be an integer that divides one of the other integers.

End

