CSL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Ragesh Jaiswal, CSE, IIT Delhi CSL202: Discrete Mathematical Structures

Induction and Recursion

Ragesh Jaiswal, CSE, IIT Delhi CSL202: Discrete Mathematical Structures

(< Ξ) < Ξ) </p>

A 10

Э

Induction and Recursion Mathematical Induction

- Mathematical induction is used to prove statements that assert that P(n) is true for all positive integers n, where P(n) is a propositional function.
- A proof by mathematical induction has two parts:
 - **Basis step**: Here we show that P(1) is true.
 - Inductive step: Here we show that if P(k) is true, then P(k+1) is true.

Definition (Principle of mathematical induction)

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

- Basis step: We verify that P(1) is true.
- Inductive step: We show that the conditional statement $\overline{P(k) \rightarrow P(k+1)}$ is true for all positive integers k.

・吊り ・ラト ・ラト

Induction and Recursion Mathematical Induction

Definition (Principle of mathematical induction)

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

- Basis step: We verify that P(1) is true.
- Inductive step: We show that the conditional statement $\overline{P(k) \rightarrow P(k+1)}$ is true for all positive integers k.
- In the inductive step, we assume that for arbitrary positive integer P(k) is true and then show that P(k+1) must also be true. The assumption that P(k) is true is called the *inductive hypothesis*.
- Induction may be expressed as the following rule of inference:

$$(P(1) \land \forall k(P(k) \rightarrow P(k+1))) \rightarrow \forall n \ P(n)$$

Definition (Principle of mathematical induction)

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

- Basis step: We verify that P(1) is true.
- Inductive step: We show that the conditional statement $\overline{P(k) \rightarrow P(k+1)}$ is true for all positive integers k.
- Why is mathematical induction valid?
 - Well-ordering principle: Every nonempty subset of the set of positive integers has a least element.
 - Argue the validity of mathematical induction using the axiom above.

直 ト イヨト イヨト

• Show that the sum of the first n odd integers is n^2 .

• • = • • = •

- Show that the sum of the first n odd integers is n^2 .
- Show that for all $n, n < 2^n$.

• • = • • = •

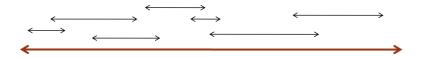
- Show that the sum of the first *n* odd integers is n^2 .
- Show that for all $n, n < 2^n$.
- Show that $2^n < n!$ for every integer *n* with $n \ge 4$.

- Show that the sum of the first n odd integers is n^2 .
- Show that for all $n, n < 2^n$.
- Show that $2^n < n!$ for every integer *n* with $n \ge 4$.
- Prove the following generalization of De Morgan's laws:

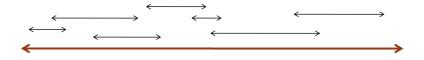
$$\overline{\cap_{j=1}^n A_j} = \cup_{j=1}^n \overline{A_j}$$

whenever $A_1, A_2, ..., A_n$ are subsets of a universal set U and $n \ge 2$.

• You have a lecture room and you get *n* requests for scheduling lectures. Each request has a start and an end time. Design an algorithm that maximizes the number of lectures held in the room.



• You have a lecture room and you get *n* requests for scheduling lectures. Each request has a start and an end time. Design an algorithm that maximizes the number of lectures held in the room.



• Consider the algorithm that schedules based on end time of lectures. We will show that this algorithm gives the optimal solution.

Problem

Interval scheduling: Given a set of *n* intervals of the form (S(i), F(i)), find the largest subset of non-overlapping intervals.

Algorithm

GreedySchedule

- Initialize R to contain all intervals
- While R is not empty
 - Choose an interval (S(i), F(i)) from R that has the smallest value of F(i)
 - Delete all intervals in R that overlaps with (S(i), F(i))

• Running time?

Problem

Interval scheduling: Given a set of *n* intervals of the form $\overline{(S(i), F(i))}$, find the largest subset of non-overlapping intervals.

Algorithm

GreedySchedule

- While R is not empty
- Choose an interval (S(i), F(i)) from R that has the smallest value of F(i)
- Delete all intervals in R that overlaps with (S(i), F(i))

• Running time? $O(n \log n)$

直 ト イヨト イヨト

伺 ト イヨト イヨト

Proof sketch

Let $a_1, a_2, ..., a_k$ be the sequence of requests that GreedySchedule picks and $o_1, o_2, ..., o_l$ be the requests in O sorted in non-decreasing order by finishing time.

• <u>Claim 1</u>: $F(a_1) \le F(o_1)$.

Proof sketch

Let $a_1, a_2, ..., a_k$ be the sequence of requests that GreedySchedule picks and $o_1, o_2, ..., o_l$ be the requests in O sorted in non-decreasing order by finishing time.

- <u>Claim 1</u>: $F(a_1) \le F(o_1)$.
- Claim 2: If $F(a_1) \le F(o_1)$, $F(a_2) \le F(o_2)$, ..., $F(a_{i-1}) \le F(o_{i-1})$, then $F(a_i) \le F(o_i)$.

ヨッ イヨッ イヨッ

Proof sketch

- Let $a_1, a_2, ..., a_k$ be the sequence of requests that GreedySchedule picks and $o_1, o_2, ..., o_l$ be the requests in O sorted in non-decreasing order by finishing time.
- We will show by induction that $\forall i, F(a_i) \leq F(o_i)$
 - Claim 1 (base case): $F(a_1) \leq F(o_1)$.
 - $\frac{\overline{\text{Claim 2 (inductive step)}}: \text{ If } F(a_1) \leq F(o_1), F(a_2) \leq F(o_2), ...,}{\overline{F(a_{i-1})} \leq F(o_{i-1}), \text{ then } F(a_i) \leq F(o_i).}$
- GreedySchedule could not have stopped after a_k .

伺下 イヨト イヨト

Greedy Algorithms Mathematical Induction: Examples (Interval scheduling)

Problem

Interval scheduling: Given a set of *n* intervals of the form (S(i), F(i)), find the largest subset of non-overlapping intervals.

Algorithm

GreedySchedule

- Initialize R to contain all intervals
- While *R* is not empty
 - Choose an interval (S(i), F(i)) from R that has the smallest value of F(i)
 - Delete all intervals in R that overlaps with (S(i), F(i))
- Another way to prove that the above greedy algorithm returns an optimal solution is by a slightly different induction argument.
- We consider the propositional function: *P*(*n*): For any input instance, if the greedy algorithm returns a solution with *n* lectures, then all optimal solutions also have *n* lectures.
- The detailed discussion with respect to this Induction argument may be found in the textbook.

Induction and Recursion Mathematical Induction: Examples

• We will only consider simple graphs for this discussion which are graphs that do not have self loops or multi-edges (i.e., multiple edges between a pair of vertices).

Definition (Strongly connected graph)

An undirected graph is called strongly connected iff for every pair of vertices in the graph there is a path between these vertices.

Definition (Tree)

An undirected graph is called a tree iff the graph is strongly connected and does not have any cycles.

Definition (Cycle)

A sequence of vertices $v_1, v_2, ..., v_k$ in an undirected graph is called a cycle iff k > 3, $v_1 = v_k$, $v_1, v_2, ..., v_{k-1}$ are distinct, and for every $1 \le i \le k-1$, there is an edge between v_i and v_{i+1} .

• Show that: Every tree with n vertices has exactly (n-1) edges.

End

Ragesh Jaiswal, CSE, IIT Delhi CSL202: Discrete Mathematical Structures

・ロト ・部 ト ・ヨト ・ヨト

3