CSL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Ragesh Jaiswal, CSE, IIT Delhi CSL202: Discrete Mathematical Structures

Induction and Recursion

Ragesh Jaiswal, CSE, IIT Delhi CSL202: Discrete Mathematical Structures

(< Ξ) < Ξ) </p>

A 10

Э

Induction and Recursion Mathematical Induction

- Mathematical induction is used to prove statements that assert that P(n) is true for all positive integers n, where P(n) is a propositional function.
- A proof by mathematical induction has two parts:
 - **Basis step**: Here we show that P(1) is true.
 - Inductive step: Here we show that if P(k) is true, then P(k+1) is true.

Definition (Principle of mathematical induction)

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

- Basis step: We verify that P(1) is true.
- Inductive step: We show that the conditional statement $\overline{P(k) \rightarrow P(k+1)}$ is true for all positive integers k.

・吊り ・ラト ・ラト

Induction and Recursion Mathematical Induction

Definition (Principle of mathematical induction)

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

- Basis step: We verify that P(1) is true.
- Inductive step: We show that the conditional statement $\overline{P(k) \rightarrow P(k+1)}$ is true for all positive integers k.
- In the inductive step, we assume that for arbitrary positive integer P(k) is true and then show that P(k+1) must also be true. The assumption that P(k) is true is called the *inductive hypothesis*.
- Induction may be expressed as the following rule of inference:

$$(P(1) \land \forall k(P(k) \rightarrow P(k+1))) \rightarrow \forall n \ P(n)$$

Definition (Principle of mathematical induction)

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

- Basis step: We verify that P(1) is true.
- Inductive step: We show that the conditional statement $\overline{P(k) \rightarrow P(k+1)}$ is true for all positive integers k.
- Why is mathematical induction valid?
 - Well-ordering principle: Every nonempty subset of the set of positive integers has a least element.
 - Argue the validity of mathematical induction using the axiom above.

直 ト イヨト イヨト

• Show that the sum of the first n odd integers is n^2 .

ト イ ヨ ト イ ヨ ト

- Show that the sum of the first n odd integers is n^2 .
- Show that for all $n, n < 2^n$.

ト イ ヨ ト イ ヨ ト

- Show that the sum of the first *n* odd integers is n^2 .
- Show that for all $n, n < 2^n$.
- Show that $2^n < n!$ for every integer *n* with $n \ge 4$.

- Show that the sum of the first n odd integers is n^2 .
- Show that for all $n, n < 2^n$.
- Show that $2^n < n!$ for every integer *n* with $n \ge 4$.
- Prove the following generalization of De Morgan's laws:

$$\overline{\cap_{j=1}^n A_j} = \cup_{j=1}^n \overline{A_j}$$

whenever $A_1, A_2, ..., A_n$ are subsets of a universal set U and $n \ge 2$.

End

Ragesh Jaiswal, CSE, IIT Delhi CSL202: Discrete Mathematical Structures

・ロト ・部 ト ・ヨト ・ヨト

3