CSL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Number Theory and Cryptography

Theorem (Chinese Remaindering Theorem)

Let $m_1, m_2, ..., m_n$ be pairwise relatively prime positive integers greater than one and $a_1, a_2, ..., a_n$ arbitrary integers. Then the system

$$x \equiv a_1 \pmod{m_1},$$

 $x \equiv a_2 \pmod{m_2},$
 \vdots
 $x \equiv a_n \pmod{m_n}$

has a unique solution modulo $m = m_1 m_2 ... m_n$. (That is, there is a solution x with $0 \le x < m$, and all other solutions are congruent modulo m to this solution.)

Theorem (Chinese Remaindering Theorem)

Let $m_1, m_2, ..., m_n$ be pairwise relatively prime positive integers greater than one and $a_1, a_2, ..., a_n$ arbitrary integers. Then the system

$$x \equiv a_1 \pmod{m_1},$$

 $x \equiv a_2 \pmod{m_2},$
 \vdots
 $x \equiv a_n \pmod{m_n}$

has a unique solution modulo $m=m_1m_2...m_n$. (That is, there is a solution x with $0 \le x < m$, and all other solutions are congruent modulo m to this solution.)

Proof of existence:

- Let $M_k = m/m_k$ and let y_k denote the inverse of M_k modulo m_k (i.e., $M_k \cdot y_k \equiv 1 \pmod{m_k}$).
- Claim: $x = \sum_i a_i \cdot M_i \cdot y_i$ is a solution modulo m.

Theorem (Chinese Remaindering Theorem)

Let $m_1, m_2, ..., m_n$ be pairwise relatively prime positive integers greater than one and $a_1, a_2, ..., a_n$ arbitrary integers. Then the system

$$x \equiv a_1 \pmod{m_1},$$

 $x \equiv a_2 \pmod{m_2},$
 \vdots
 $x \equiv a_n \pmod{m_n}$

has a unique solution modulo $m=m_1m_2...m_n$. (That is, there is a solution x with $0 \le x < m$, and all other solutions are congruent modulo m to this solution.)

- Proof of uniqueness:
 - Lemma: Let p, q be relatively prime positive integers. For any integers a, b, if $a \equiv b \pmod{p}$ and $a \equiv b \pmod{q}$, then $a \equiv b \pmod{pq}$.

Theorem (Chinese Remaindering Theorem)

Let $m_1, m_2, ..., m_n$ be pairwise relatively prime positive integers greater than one and $a_1, a_2, ..., a_n$ arbitrary integers. Then the system

$$x \equiv a_1 \pmod{m_1},$$

 $x \equiv a_2 \pmod{m_2},$
 \vdots
 $x \equiv a_n \pmod{m_n}$

has a unique solution modulo $m=m_1m_2...m_n$. (That is, there is a solution x with $0 \le x < m$, and all other solutions are congruent modulo m to this solution.)

- Let $m_1, ..., m_n$ be relatively prime and let $m = m_1...m_n$. Consider the following two sets:
 - $A = Z_m$ • $B = \{(x_1, ..., x_n) | \forall i \ (x_i \in Z_{m_i}) \}.$
- <u>Claim</u>: There is a bijection between A and B.

Suppose we have to multiply the following two numbers:

$$x = 1682593$$
 and $y = 176234$

• Let $m_1 = 11$, $m_2 = 13$, $m_3 = 17$, $m_4 = 19$, $m_5 = 23$, $m_6 = 29$, $m_7 = 31$, $m_8 = 37$, $m_9 = 41$. So, $m = m_1...m_9 = 1448810778701$.

r	$x \pmod{r}$	y (mod r)	xy (mod r)
11	0	3	?
13	3	6	?
17	1	12	?
19	10	9	?
23	5	8	?
29	13	1	?
31	6	30	?
37	18	3	?
41	35	16	?

Suppose we have to multiply the following two numbers:

$$x = 1682593$$
 and $y = 176234$

• Let $m_1 = 11$, $m_2 = 13$, $m_3 = 17$, $m_4 = 19$, $m_5 = 23$, $m_6 = 29$, $m_7 = 31$, $m_8 = 37$, $m_9 = 41$. So, $m = m_1...m_9 = 1448810778701$.

r	$x \pmod{r}$	y (mod r)	xy (mod r)
11	0	3	0
13	3	6	5
17	1	12	12
19	10	9	14
23	5	8	17
29	13	1	13
31	6	30	25
37	18	3	17
41	35	16	27

• Can we construct xy using the table above?

Read the chapter on application of congruences.

Number Theory and Cryptography

• One of the main tasks in Cryptography is *secure* communication.

- The above picture shows a *symmetric* scheme.
- How do you construct such a scheme?

- The main issue with symmetric schemes is *key distribution*.
- The picture below shows an alternate mechanism known as *Public key encryption*.

- How do we construct a public key encryption scheme?
- The description of a public key encryption scheme involves defining three procedures.
 - Gen: This generates the public-key, secret-key pair (pk, sk).
 - $Encrypt_{pk}(M)$: This takes as input a message and then uses just the public key to generate a cipher text.
 - $Decrypt_{sk}(C)$: This takes as input a cipher text and uses the secret key to generate the message.
- The correctness property that should hold for the above procedures is:

$$Decrypt_{sk}(Encrypt_{pk}(M)) = M.$$

- Consider the following scheme:
 - Gen: Find large n-bit primes p,q (n is usually 1024). Let N=pq and $\phi(N)=(p-1)(q-1)$. Find integers e,d such that $ed\equiv 1 \pmod{\phi(N)}$. Output (pk,sk), where

$$pk = (N, e)$$
 and $sk = (N, d)$

- $Encrypt_{pk}(M)$: Output $M^e \pmod{N}$.
- $Decrypt_{sk}(C)$: Output $C^d \pmod{N}$.
- This is popularly called the RSA scheme. This is named after its inventors Ron Rivest, Adi Shamir, and Leonard Adleman.
- Does the correctness property hold for the above scheme?

Number Theory and Cryptography Group Theory

Definition (Group)

A group is a set ${\it G}$ along with a binary operator \cdot for which the following conditions hold:

- **1** Closure: For all $g, h \in G$, $g \cdot h \in G$.
- **③** Inverse: For all $g \in G$, there exists an $h \in G$ such that $g \cdot h = e = h \cdot g$. Such h is called an *inverse* of g.
- **4** Associativity: For all $g_1, g_2, g_3 \in G$, $(g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$.

Definition (Finite Group)

When a group G has finite number of elements, then we say that it is a finite group of order |G|.

Definition (Abelian Group)

Gis called an abelian group if it is a group and also satisfies the following condition:

• Commutativity: For all $g, h \in G$, $g \cdot h = h \cdot g$.

Number Theory and Cryptography Group Theory

- Exercise 1: Identity element in any group is unique.
- Exercise 2: Every element in any group has a unique inverse.
- Exercise 3: Let G be a group and $a, b, c \in G$. If $a \cdot c = b \cdot c$, then a = b. In particular, is $a \cdot c = c$, then a is the identity element.

Number Theory and Cryptography Group Theory

Theorem

Let G be a finite abelian group with m = |G|. Then for any element $g \in G$, $g^m = 1$. (Here g^m denotes $g \cdot g \cdot ... \cdot g$ (m operations).)

Number Theory and Cryptography Group Theory

Theorem

Let G be a finite abelian group with m = |G|. Then for any element $g \in G$, $g^m = 1$. (Here g^m denotes $g \cdot g \cdot ... \cdot g$ (m operations).)

• Let m be prime and a be an integer such that $1 \le a < m$. What is the value of a^{m-1} ?

Number Theory and Cryptography Group Theory and Cryptography

Theorem

Let G be a finite abelian group with m = |G|. Then for any element $g \in G$, $g^m = 1$. (Here g^m denotes $g \cdot g \cdot ... \cdot g$ (m operations).)

Theorem (Fermat's little theorem)

If p is a prime number, then for any integer a we have: $a^p \equiv a \pmod{p}$.

• Let p,q be primes, let N=pq, let $\phi(N)=(p-1)(q-1)$, and let e,d be such $ed\equiv 1\ (mod\ \phi(N))$. Then for any $M\in Z_N^*$, what is the value of $M^{ed}\ (mod\ N)$?

Number Theory and Cryptography

Group Theory and Cryptography

$\mathsf{Theorem}$

Let G be a finite abelian group with m = |G|. Then for any element $g \in G$, $g^m = 1$. (Here g^m denotes $g \cdot g \cdot ... \cdot g$ (m operations).)

Theorem (Fermat's little theorem)

If p is a prime number, then for any integer a we have: $a^p \equiv a \pmod{p}$.

Theorem

Let p,q be primes, let N=pq, let $\phi(N)=(p-1)(q-1)$, and let e,d be such $ed\equiv 1\ (mod\ \phi(N))$. Then for any $M\in Z_N$, $M^{ed}\ (mod\ N)=M$

- The above theorem proves the correctness of the RSA algorithm.
- Question 1: Can we break RSA if we can factor N?
- Question 2: Can we factor N if we can break RSA?

Number Theory and Cryptography Diffie-Hellman key exchange

- Suppose we talk about symmetric schemes. How do two parties exchange secret key?
- Diffie-Hellman Key Exchange.

Both parties share g^{xy} which is the secret key for the session.

• The assumption used here is that there are groups in which computing g^{xy} given just g^x and g^y is difficult.

Number Theory and Cryptography Diffie-Hellman key exchange

- Authentication is an issue in the this key exchange protocol.
- Diffie-Hellman Key Exchange: Man-in-the-middle attack

End