CSL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Number Theory and Cryptography

Number Theory and Cryptography

Primes and GCD

Theorem (Chinese Remaindering Theorem)

Let $m_{1}, m_{2}, \ldots, m_{n}$ be pairwise relatively prime positive integers greater than one and $a_{1}, a_{2}, \ldots, a_{n}$ arbitrary integers. Then the system

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod m_{1}\right), \\
& x \equiv a_{2}\left(\bmod m_{2}\right), \\
& \vdots \\
& x \equiv a_{n}\left(\bmod m_{n}\right)
\end{aligned}
$$

has a unique solution modulo $m=m_{1} m_{2} \ldots m_{n}$. (That is, there is a solution x with $0 \leq x<m$, and all other solutions are congruent modulo m to this solution.)

Number Theory and Cryptography

Primes and GCD

Theorem (Chinese Remaindering Theorem)

Let $m_{1}, m_{2}, \ldots, m_{n}$ be pairwise relatively prime positive integers greater than one and $a_{1}, a_{2}, \ldots, a_{n}$ arbitrary integers. Then the system

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod m_{1}\right), \\
& x \equiv a_{2}\left(\bmod m_{2}\right), \\
& \vdots \\
& x \equiv a_{n}\left(\bmod m_{n}\right)
\end{aligned}
$$

has a unique solution modulo $m=m_{1} m_{2} \ldots m_{n}$. (That is, there is a solution x with $0 \leq x<m$, and all other solutions are congruent modulo m to this solution.)

- Proof of existence:
- Let $M_{k}=m / m_{k}$ and let y_{k} denote the inverse of M_{k} modulo m_{k} (i.e., $M_{k} \cdot y_{k} \equiv 1\left(\bmod m_{k}\right)$).
- Claim: $x=\sum_{i} a_{i} \cdot M_{i} \cdot y_{i}$ is a solution modulo m.

Number Theory and Cryptography

Primes and GCD

Theorem (Chinese Remaindering Theorem)

Let $m_{1}, m_{2}, \ldots, m_{n}$ be pairwise relatively prime positive integers greater than one and $a_{1}, a_{2}, \ldots, a_{n}$ arbitrary integers. Then the system

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod m_{1}\right), \\
& x \equiv a_{2}\left(\bmod m_{2}\right), \\
& \vdots \\
& x \equiv a_{n}\left(\bmod m_{n}\right)
\end{aligned}
$$

has a unique solution modulo $m=m_{1} m_{2} \ldots m_{n}$. (That is, there is a solution x with $0 \leq x<m$, and all other solutions are congruent modulo m to this solution.)

- Proof of uniqueness:
- Lemma: Let p, q be relatively prime positive integers. For any integers a, b, if $a \equiv b(\bmod p)$ and $a \equiv b(\bmod q)$, then $a \equiv b(\bmod p q)$.

Number Theory and Cryptography

Primes and GCD

Theorem (Chinese Remaindering Theorem)

Let $m_{1}, m_{2}, \ldots, m_{n}$ be pairwise relatively prime positive integers greater than one and $a_{1}, a_{2}, \ldots, a_{n}$ arbitrary integers. Then the system

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod m_{1}\right), \\
& x \equiv a_{2}\left(\bmod m_{2}\right), \\
& \vdots \\
& x \equiv a_{n}\left(\bmod m_{n}\right)
\end{aligned}
$$

has a unique solution modulo $m=m_{1} m_{2} \ldots m_{n}$. (That is, there is a solution x with $0 \leq x<m$, and all other solutions are congruent modulo m to this solution.)

- Let m_{1}, \ldots, m_{n} be relatively prime and let $m=m_{1} \ldots m_{n}$. Consider the following two sets:
- $A=Z_{m}$
- $B=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \forall i\left(x_{i} \in Z_{m_{i}}\right)\right\}$.
- Claim: There is a bijection between A and B.

Number Theory and Cryptography

Primes and GCD

- Suppose we have to multiply the following two numbers:

$$
x=1682593 \quad \text { and } \quad y=176234
$$

- Let $m_{1}=11, m_{2}=13, m_{3}=17, m_{4}=19, m_{5}=23, m_{6}=29, m_{7}=$ $31, m_{8}=37, m_{9}=41$. So, $m=m_{1} \ldots m_{9}=1448810778701$.

r	$x(\bmod r)$	$y(\bmod r)$	$x y(\bmod r)$
11	0	3	$?$
13	3	6	$?$
17	1	12	$?$
19	10	9	$?$
23	5	8	$?$
29	13	1	$?$
31	6	30	$?$
37	18	3	$?$
41	35	16	$?$

Number Theory and Cryptography

Primes and GCD

- Suppose we have to multiply the following two numbers:

$$
x=1682593 \quad \text { and } \quad y=176234
$$

- Let $m_{1}=11, m_{2}=13, m_{3}=17, m_{4}=19, m_{5}=23, m_{6}=29, m_{7}=$ $31, m_{8}=37, m_{9}=41$. So, $m=m_{1} \ldots m_{9}=1448810778701$.

r	$x(\bmod r)$	$y(\bmod r)$	$x y(\bmod r)$
11	0	3	0
13	3	6	5
17	1	12	12
19	10	9	14
23	5	8	17
29	13	1	13
31	6	30	25
37	18	3	17
41	35	16	27

- Can we construct $x y$ using the table above?

Read the chapter on application of congruences.

Number Theory and Cryptography

Number Theory and Cryptography
 Cryptography

- One of the main tasks in Cryptography is secure communication.

- The above picture shows a symmetric scheme.
- How do you construct such a scheme?

Number Theory and Cryptography
 Cryptography

- The main issue with symmetric schemes is key distribution.
- The picture below shows an alternate mechanism known as Public key encryption.

Step 1: Give your public key to sender.

Step 2: Sender uses your public key to encrypt the plaintext.

Step 3: Sender gives the ciphertext to you.

Step 4: Use your private key (and passphrase) to decrypt the ciphertext.

Number Theory and Cryptography
 Cryptography

- How do we construct a public key encryption scheme?
- The description of a public key encryption scheme involves defining three procedures.
- Gen: This generates the public-key, secret-key pair ($p k, s k$).
- $\operatorname{Encrypt}_{p k}(M)$: This takes as input a message and then uses just the public key to generate a cipher text.
- Decrypt $t_{\text {sk }}(C)$: This takes as input a cipher text and uses the secret key to generate the message.
- The correctness property that should hold for the above procedures is:

$$
\operatorname{Decrypt}_{s k}\left(\operatorname{Encrypt}_{p k}(M)\right)=M
$$

Number Theory and Cryptography
 Cryptography

- Consider the following scheme:
- Gen: Find large n-bit primes p, q (n is usually 1024). Let $N=p q$ and $\phi(N)=(p-1)(q-1)$. Find integers e, d such that $e d \equiv 1(\bmod \phi(N))$. Output ($p k, s k$), where

$$
p k=(N, e) \quad \text { and } \quad s k=(N, d)
$$

- Encrypt $t_{p k}(M):$ Output $M^{e}(\bmod N)$.
- Decryptsk (C) : Output $C^{d}(\bmod N)$.
- This is popularly called the RSA scheme. This is named after its inventors Ron Rivest, Adi Shamir, and Leonard Adleman.
- Does the correctness property hold for the above scheme?

Number Theory and Cryptography
 Group Theory

Definition (Group)

A group is a set G along with a binary operator • for which the following conditions hold:
(1) Closure: For all $g, h \in G, g \cdot h \in G$.
(2) Identity: There exists an identity $e \in G$ such that for all $g \in G$, $e \cdot g=g \cdot e=g$.
(3) Inverse: For all $g \in G$, there exists an $h \in G$ such that $g \cdot h=e=h \cdot g$. Such h is called an inverse of g.
(4) Associativity: For all $g_{1}, g_{2}, g_{3} \in G,\left(g_{1} \cdot g_{2}\right) \cdot g_{3}=g_{1} \cdot\left(g_{2} \cdot g_{3}\right)$.

Definition (Finite Group)

When a group G has finite number of elements, then we say that it is a finite group of order $|G|$.

Definition (Abelian Group)

Gis called an abelian group if it is a group and also satisfies the following condition:

- Commutativity: For all $g, h \in G, g \cdot h=h \cdot g$.

Number Theory and Cryptography

Group Theory

- Exercise 1: Identity element in any group is unique.
- Exercise 2: Every element in any group has a unique inverse.
- Exercise 3: Let G be a group and $a, b, c \in G$.If $a \cdot c=b \cdot c$, then $a=b$. In particular, is $a \cdot c=c$, then a is the identity element.

Number Theory and Cryptography

 Group Theory
Theorem

Let G be a finite abelian group with $m=|G|$. Then for any element $g \in G, g^{m}=1$. (Here g^{m} denotes $g \cdot g \cdot \ldots \cdot g$ (m operations).)

Number Theory and Cryptography

 Group Theory
Theorem

Let G be a finite abelian group with $m=|G|$. Then for any element $g \in G, g^{m}=1$. (Here g^{m} denotes $g \cdot g \cdot \ldots \cdot g$ (m operations).)

- Let m be prime and a be an integer such that $1 \leq a<m$. What is the value of a^{m-1} ?

Number Theory and Cryptography

Group Theory and Cryptography

Theorem

Let G be a finite abelian group with $m=|G|$. Then for any element $g \in G, g^{m}=1$. (Here g^{m} denotes $g \cdot g \cdot \ldots \cdot g$ (m operations).)

Theorem (Fermat's little theorem)

If p is a prime number, then for any integer a we have:
$a^{p} \equiv a(\bmod p)$.

- Let p, q be primes, let $N=p q$, let $\phi(N)=(p-1)(q-1)$, and let e, d be such $e d \equiv 1(\bmod \phi(N))$. Then for any $M \in Z_{N}^{*}$, what is the value of $M^{e d}(\bmod N)$?

Number Theory and Cryptography

Group Theory and Cryptography

Theorem

Let G be a finite abelian group with $m=|G|$. Then for any element $g \in G, g^{m}=1$. (Here g^{m} denotes $g \cdot g \cdot \ldots \cdot g$ (m operations).)

Theorem (Fermat's little theorem)

If p is a prime number, then for any integer a we have: $a^{p} \equiv a(\bmod p)$.

Theorem

Let p, q be primes, let $N=p q$, let $\phi(N)=(p-1)(q-1)$, and let e, d be such ed $\equiv 1(\bmod \phi(N))$. Then for any $M \in Z_{N}, M^{e d}(\bmod N)=M$

- The above theorem proves the correctness of the RSA algorithm.
- Question 1: Can we break RSA if we can factor N?
- Question 2: Can we factor N if we can break RSA?

Number Theory and Cryptography
 Diffie-Hellman key exchange

- Suppose we talk about symmetric schemes. How do two parties exchange secret key?
- Diffie-Hellman Key Exchange.

Both parties share $g^{\wedge}\{x y\}$ which is the secret key for the session.

- The assumption used here is that there are groups in which computing $g^{x y}$ given just g^{x} and g^{y} is difficult.

Number Theory and Cryptography

Diffie-Hellman key exchange

- Authentication is an issue in the this key exchange protocol.
- Diffie-Hellman Key Exchange: Man-in-the-middle attack

End

