CSL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Ragesh Jaiswal, CSE, IIT Delhi CSL202: Discrete Mathematical Structures

Number Theory and Cryptography

Theorem

Let a, b be positive integers. Then there exists integers x, y such that xa + yb = gcd(a, b). Furthermore, gcd(a, b) is the smallest positive integer that can be expressed in this way.

Theorem

Let a, b be positive integers. Then there exists integers x, y such that xa + yb = gcd(a, b). Furthermore, gcd(a, b) is the smallest positive integer that can be expressed in this way.

Theorem

If a, b, and c are positive integers such that gcd(a, b) = 1 and a|bc, then a|c.

Theorem

If p is a prime and $p|a_1a_2...a_n$, where each a_i is an integer, then $p|a_i$ for some i.

Number Theory and Cryptography Primes and GCD

- For any positive integer m, let Z_m denote the set $\{0, 1, ..., m-1\}$.
- Consider the set $Z_m^* = \{x \in Z_m | gcd(x, m) = 1\}$ and the operator \cdot_m which is basically the operation multiplication modulo m.
- Show that \cdot_m satisfies the following properties:
 - Closure
 - Associativity
 - Commutativity
 - Distributivity
 - Identity
 - Inverse

• How do you compute the inverse of $x \in Z_m^*$ modulo *m*?

Problem: Given integers a ≥ b > 0, design an algorithm for computing integers x, y such that xa + yb = gcd(a, b).

Extended-Euclid-GCD(a, b) If(b = 0), then return(a, 1, 0) else Compute integers q, r such that a = qb + r and $0 \le r < b$. Let (d, x, y) = Extended-Euclid-GCD(b, r) return(d, y, x - yq) Problem: Given integers a ≥ b > 0, design an algorithm for computing integers x, y such that xa + yb = gcd(a, b).

Extended-Euclid-GCD(a, b) If(b = 0), then return(a, 1, 0) else Compute integers q, r such that a = qb + r and $0 \le r < b$. Let (d, x, y) = Extended-Euclid-GCD(b, r) return(d, y, x - yq)

• How do you compute the inverse of $x \in Z_m^*$ modulo m?

Number Theory and Cryptography Primes and GCD

Problem: Given integers a ≥ b > 0, design an algorithm for computing integers x, y such that xa + yb = gcd(a, b).

```
Extended-Euclid-GCD(a, b)

If(b = 0), then return(a, 1, 0)

else

Compute integers q, r such that a = qb + r and 0 \le r < b.

Let (d, x, y) = Extended-Euclid-GCD(b, r)

return(d, y, x - yq)
```

- How do you compute the inverse of $x \in Z_m^*$ modulo *m*?
 - Find the inverse of 25 modulo 53.
 - What are the solutions of linear congruence $3x \equiv 4 \pmod{7}$?

• Worst-case time complexity of simple operations. In each of the cases the input size is denoted by n = |a| + |b|.

Operation	Time complexity
$a \pm b$?
a · b	?
a (div b)	?
a (mod b)	?
a^{-1} (mod b) for relatively prime a, b	?

• Worst-case time complexity of simple operations. In each of the cases the input size is denoted by n = |a| + |b|.

Operation	Time complexity
$a \pm b$	<i>O</i> (<i>n</i>)
a · b	$O(n^2)$
a (div b)	$O(n^2)$
a (mod b)	$O(n^2)$
a^{-1} (mod b) for relatively prime a, b	$O(n^3)$

Theorem (Chinese Remaindering Theorem)

Let $m_1, m_2, ..., m_n$ be pairwise relatively prime positive integers greater than one and $a_1, a_2, ..., a_n$ arbitrary integers. Then the system

$$x \equiv a_1 \pmod{m_1},$$

$$x \equiv a_2 \pmod{m_2},$$

$$\vdots$$

$$x \equiv a_n \pmod{m_n}$$

has a unique solution modulo $m = m_1 m_2 \dots m_n$. (That is, there is a solution x with $0 \le x < m$, and all other solutions are congruent modulo m to this solution.)

End

Ragesh Jaiswal, CSE, IIT Delhi CSL202: Discrete Mathematical Structures

・ロト ・部 ト ・ヨト ・ヨト

3