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Theorem

Let a, b be positive integers.Then there exists integers x , y such
that xa + yb = gcd(a, b). Furthermore, gcd(a, b) is the smallest
positive integer that can be expressed in this way.
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Theorem

Let a, b be positive integers.Then there exists integers x , y such
that xa + yb = gcd(a, b). Furthermore, gcd(a, b) is the smallest
positive integer that can be expressed in this way.

Theorem

If a, b, and c are positive integers such that gcd(a, b) = 1 and
a|bc, then a|c.

Theorem

If p is a prime and p|a1a2...an, where each ai is an integer, then
p|ai for some i.
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For any positive integer m, let Zm denote the set
{0, 1, ...,m − 1}.
Consider the set Z ∗

m = {x ∈ Zm|gcd(x ,m) = 1} and the
operator ·m which is basically the operation multiplication
modulo m.

Show that ·m satisfies the following properties:

Closure
Associativity
Commutativity
Distributivity
Identity
Inverse

How do you compute the inverse of x ∈ Z ∗
m modulo m?
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Problem: Given integers a ≥ b > 0, design an algorithm for
computing integers x , y such that xa + yb = gcd(a, b).

Extended-Euclid-GCD(a, b)
If(b = 0), then return(a, 1, 0)
else

Compute integers q, r such that a = qb + r and 0 ≤ r < b.
Let (d , x , y) = Extended-Euclid-GCD(b, r)
return(d , y , x − yq)
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Problem: Given integers a ≥ b > 0, design an algorithm for
computing integers x , y such that xa + yb = gcd(a, b).

Extended-Euclid-GCD(a, b)
If(b = 0), then return(a, 1, 0)
else

Compute integers q, r such that a = qb + r and 0 ≤ r < b.
Let (d , x , y) = Extended-Euclid-GCD(b, r)
return(d , y , x − yq)

How do you compute the inverse of x ∈ Z ∗
m modulo m?

Find the inverse of 25 modulo 53.
What are the solutions of linear congruence 3x ≡ 4 (mod 7)?
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Worst-case time complexity of simple operations. In each of
the cases the input size is denoted by n = |a|+ |b|.

Operation Time complexity
a± b ?

a · b ?

a (div b) ?

a (mod b) ?

a−1 (mod b) for relatively prime a, b ?
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Worst-case time complexity of simple operations. In each of
the cases the input size is denoted by n = |a|+ |b|.

Operation Time complexity
a± b O(n)

a · b O(n2)

a (div b) O(n2)

a (mod b) O(n2)

a−1 (mod b) for relatively prime a, b O(n3)
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Theorem (Chinese Remaindering Theorem)

Let m1,m2, ...,mn be pairwise relatively prime positive integers
greater than one and a1, a2, ..., an arbitrary integers. Then the
system

x ≡ a1 (mod m1),

x ≡ a2 (mod m2),
...

x ≡ an (mod mn)

has a unique solution modulo m = m1m2...mn. (That is, there is a
solution x with 0 ≤ x < m, and all other solutions are congruent
modulo m to this solution.)
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