CSL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Number Theory and Cryptography

Number Theory and Cryptography

Divisibility and Modular Arithmetic

Theorem

Let b be an integer greater than 1. Then if n is a positive integer, it can be expressed uniquely in the form

$$
n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{1} b+a_{0}
$$

where k is a nonnegative integer, $a_{0}, a_{1}, \ldots, a_{k}$ are nonnegative integers less than b, and $a_{k} \neq 0$.

- What is the running time of each of the following operations:
- Adding an m bit number with an n bit number.
- Multiplying an m bit number with an n bit number.
- Dividing an m bit number by an n bit number.
- Computing an m bit number modulo an n bit number.

Number Theory and Cryptography

Primes and GCD

Definition

An integer p greater than 1 is called prime if the only positive factors of p are 1 and p. A positive integer that is greater than 1 and is not prime is called composite.

Theorem (Fundamental theorem of arithmetic)

Every integer greater than 1 can be written uniquely as a prime or as the product of two or more primes where the prime factors are written in order of nondecreasing size.

Theorem

If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n}.

- How can we find all prime numbers ≤ 100 ?
- Show that any composite number ≤ 100 are divisible by $2,3,5,7$.
- Sieve of Eratosthenes uses this idea to eliminate all composites and list all primes.

Number Theory and Cryptography
 Primes and GCD

Theorem
 There are infinitely many primes.

Number Theory and Cryptography
 Primes and GCD

Definition

Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b. The greatest common divisor of a and b is denoted by $\operatorname{gcd}(a, b)$.

Definition

The integers a and b are relatively prime if their greatest common divisor is 1 .

Definition

The integers $a_{1}, a_{2}, \ldots, a_{n}$ are pairwise relatively prime if $\operatorname{gcd}\left(a_{i}, a_{j}\right)=1$ whenever $1 \leq i<j \leq n$.

Definition

The least common multiple of the positive integers a and b is the smallest positive integer that is divisible by both a and b. The least common multiple of a and b is denoted by $\operatorname{Icm}(a, b)$.

Number Theory and Cryptography

Primes and GCD

Theorem

Let a and b be positive integers. Then $a b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)$.

Theorem

$$
\begin{aligned}
& \text { Let } a=b q+r \text {, where } a, b, q \text {, and } r \text { are integers. Then } \\
& \operatorname{gcd}(a, b)=\operatorname{gcd}(b, r) .
\end{aligned}
$$

- Using the above theorem, design an algorithm to compute gcd of two n bit numbers. What is the worst-case running time of your algorithm?

Number Theory and Cryptography
 Primes and GCD

Theorem

Let $a=b q+r$, where a, b, q, and r are integers. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

- Using the above theorem, design an algorithm to compute gcd of two n bit numbers. What is the worst-case running time of your algorithm?

```
Euclid-GCD \((a, b)\)
    If ( \(b=0\) ) then return \((a)\)
    else return(Euclid-GCD \((b, a(\bmod b)))\)
```


Number Theory and Cryptography
 Primes and GCD

```
Euclid-GCD \((a, b)\)
    If ( \(b=0\) ) then return \((a)\)
    else return(Euclid-GCD \((b, a(\bmod b)))\)
```

- How many recursive calls are made by the algorithm?
- What is the worst-case time complexity of the algorithm?

End

