CSL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Ragesh Jaiswal, CSE, IIT Delhi CSL202: Discrete Mathematical Structures

Number Theory and Cryptography

Definition

If a and b are integers with $a \neq 0$, we say that a divides b if there is an integer c such that b = ac, or equivalently, if $\frac{b}{a}$ is an integer. When a divides b we say that a is a factor or divisor of b and that b is a multiple of a. The notation a|b denotes that a divides b. We write $a \not| b$ when a does not divide b.

Theorem

Let a, b, and c be integers, where $a \neq 0$. Then

- 1 If a|b and a|c, then a|(b+c).
- **2** If a|b, then a|bc for all integers c.
- \bullet If a b and b c, then a c.

Number Theory and Cryptography Divisibility and Modular Arithmetic

Definition

If a and b are integers with $a \neq 0$, we say that a divides b if there is an integer c such that b = ac, or equivalently, if $\frac{b}{a}$ is an integer. When a divides b we say that a is a factor or divisor of b and that b is a multiple of a. The notation a|b denotes that a divides b. We write $a \not| b$ when a does not divide b.

Theorem

Let a, b, and c be integers, where $a \neq 0$. Then

1) If
$$a|b$$
 and $a|c$, then $a|(b+c)$.

- If a|b, then a|bc for all integers c.
- **3** If a|b and b|c, then a|c.

Corollary

If a, b, and c are integers, where $a \neq 0$, such that a|b and a|c, then a|(mb + nc) whenever m and n are integers.

Theorem (Division Theorem)

Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r.

Definition

In the equality given in the division theorem, d is called the divisor, a is called the dividend, q is called the quotient, and r is called the remainder. This notation is used to express the quotient and remainder:

$$q = a (div d), \quad r = a (mod d)$$

Number Theory and Cryptography Divisibility and Modular Arithmetic

Definition

If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides a - b. We use the notation $a \equiv b \pmod{m}$ to indicate that a is congruent to b modulo m. We say that $a \equiv b \pmod{m}$ is a congruence and that m is its modulus. If a and b are not congruent modulo m, we write $a \not\equiv b \pmod{m}$.

Theorem

Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if a $(mod \ m) = b \pmod{m}$.

Theorem

Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that a = b + km.

・ 同 ト ・ ヨ ト ・ ヨ

Theorem

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then

 $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

Theorem

Let m be a positive integer and let a and b be integers. Then

$$(a + b) \pmod{m} = ((a \pmod{m}) + (b \pmod{m})) \pmod{m}$$

and

$$ab \ (mod \ m) = ((a \ (mod \ m))(b \ (mod \ m))) \ (mod \ m).$$

- Let $Z_m = \{0, 1, 2, ..., m-1\}.$
- We can define the following arithmetic operations on Z_m :
 - $+_m$: This is defined as $a +_m b = (a + b) \pmod{m}$.
 - \cdot_m : This is defined as $a \cdot_m b = (a \cdot b) \pmod{m}$.
- Show that $+_m$ and \cdot_m satisfies the following properties:
 - Closure
 - Associativity
 - Commutativity
 - Identity
 - Additive inverse
 - Distributivity

End

Ragesh Jaiswal, CSE, IIT Delhi CSL202: Discrete Mathematical Structures

・ロト ・部 ト ・ヨト ・ヨト

3