CSL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Number Theory and Cryptography

Number Theory and Cryptography

Divisibility and Modular Arithmetic

Definition

If a and b are integers with $a \neq 0$, we say that a divides b if there is an integer c such that $b=a c$, or equivalently, if $\frac{b}{a}$ is an integer. When a divides b we say that a is a factor or divisor of b and that b is a multiple of a. The notation $a \mid b$ denotes that a divides b. We write $a \nmid b$ when a does not divide b.

Theorem

Let a, b, and c be integers, where $a \neq 0$. Then
(1) If $a \mid b$ and $a \mid c$, then $a \mid(b+c)$.
(2) If $a \mid b$, then $a \mid b c$ for all integers c.
(3) If $a \mid b$ and $b \mid c$, then $a \mid c$.

Number Theory and Cryptography

Divisibility and Modular Arithmetic

Definition

If a and b are integers with $a \neq 0$, we say that a divides b if there is an integer c such that $b=a c$, or equivalently, if $\frac{b}{a}$ is an integer. When a divides b we say that a is a factor or divisor of b and that b is a multiple of a. The notation $a \mid b$ denotes that a divides b. We write $a \nmid b$ when a does not divide b.

Theorem

Let a, b, and c be integers, where $a \neq 0$. Then
(1) If $a \mid b$ and $a \mid c$, then $a \mid(b+c)$.
(2) If $a \mid b$, then $a \mid b c$ for all integers c.
(3) If $a \mid b$ and $b \mid c$, then $a \mid c$.

Corollary

If a, b, and c are integers, where $a \neq 0$, such that $a \mid b$ and $a \mid c$, then $a \mid(m b+n c)$ whenever m and n are integers.

Number Theory and Cryptography

Divisibility and Modular Arithmetic

Theorem (Division Theorem)

Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \leq r<d$, such that $a=d q+r$.

Definition

In the equality given in the division theorem, d is called the divisor, a is called the dividend, q is called the quotient, and r is called the remainder. This notation is used to express the quotient and remainder:

$$
q=a(\operatorname{div} d), \quad r=a(\bmod d)
$$

Number Theory and Cryptography

Divisibility and Modular Arithmetic

Definition

If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides $a-b$. We use the notation $a \equiv b(\bmod m)$ to indicate that a is congruent to b modulo m. We say that $a \equiv b(\bmod m)$ is a congruence and that m is its modulus. If a and b are not congruent modulo m, we write $a \not \equiv b(\bmod m)$.

Theorem

Let a and b be integers, and let m be a positive integer. Then $a \equiv b(\bmod m)$ if and only if $a(\bmod m)=b(\bmod m)$.

Theorem

Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that $a=b+k m$.

Number Theory and Cryptography

Divisibility and Modular Arithmetic

Theorem

Let m be a positive integer. If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then

$$
a+c \equiv b+d(\bmod m) \quad \text { and } \quad a c \equiv b d(\bmod m) .
$$

Theorem

Let m be a positive integer and let a and b be integers. Then

$$
(a+b)(\bmod m)=((a(\bmod m))+(b(\bmod m)))(\bmod m)
$$

and

$$
a b(\bmod m)=((a(\bmod m))(b(\bmod m)))(\bmod m)
$$

Number Theory and Cryptography

Divisibility and Modular Arithmetic

- Let $Z_{m}=\{0,1,2, \ldots, m-1\}$.
- We can define the following arithmetic operations on Z_{m} :
- $+_{m}$: This is defined as $a+_{m} b=(a+b)(\bmod m)$.
- $\cdot m$: This is defined as $a \cdot m b=(a \cdot b)(\bmod m)$.
- Show that $+_{m}$ and \cdot_{m} satisfies the following properties:
- Closure
- Associativity
- Commutativity
- Identity
- Additive inverse
- Distributivity

End

