CSL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Ragesh Jaiswal, CSE, IIT Delhi CSL202: Discrete Mathematical Structures

Warm-up exercise

Ragesh Jaiswal, CSE, IIT Delhi CSL202: Discrete Mathematical Structures

→ ∃ → < ∃ →</p>

• You must be familiar with the definition of Big-O from Data Structures. Note that the definition is an interesting example of nested quantifiers.

Definition (Big-O)

Let f(n) and g(n) denote functions mapping positive integers to positive real numbers. The function f(n) is said to be O(g(n)) (or f(n) = O(g(n))) in short if and only if there exists constants $C, n_0 > 0$ such that for all $n \ge n_0, f(n) \le C \cdot g(n)$.

- How would you argue that $5n^2 + 3n + 1$ is $0(n^2)$?
- How would you argue that 2^n is not O(n)?

向下 イヨト イヨト

Rules of Inference

Ragesh Jaiswal, CSE, IIT Delhi CSL202: Discrete Mathematical Structures

→ ∃ → < ∃ →</p>

э

- Consider the following argument.
 - "If you have a current password, then you can log onto the network."
 - "You have a current password."
 - Therefore "you can log onto the network."
- Is this a valid argument? Why?

- 王王 - 王王

- Argument: A sequence of statements that end with a conclusion.
- Valid argument: The conclusion must follow from the truth of the preceding statements (known as *premises*). An argument is valid if and only if it is impossible for all the premises to be true and conclusion to be false.
- <u>Rules of inference</u>: Templates for obtaining new statements from already available statements or in other words templates for constructing valid arguments.

- Consider the following argument.
 - "If you have a current password, then you can log onto the network."
 - "You have a current password."
 - Therefore "you can log onto the network."
- Is this a valid argument? Why?

- 王王 - 王王

- Consider the following argument.
 - "If you have a current password, then you can log onto the network."
 - "You have a current password."
 - Therefore "you can log onto the network."
- Is this a valid argument? Why?
- Let us write this argument more concisely.
 - Propositions:
 - p: "You have a current password."
 - q: "You can log onto the network."
 - Argument:

$$p \rightarrow q$$

 p
 $\therefore q$

ヨト イヨト イヨト

Logic Rules of Inference: Propositional logic

- Consider the following argument.
 - "If you have a current password, then you can log onto the network."
 - "You have a current password."
 - Therefore "you can log onto the network."
- Is this a valid argument? Why?
- Let us write this argument more concisely.
 - Propositions:
 - p: "You have a current password."
 - q: "You can log onto the network."
 - Argument:

$$p \rightarrow q$$

 p
 $\therefore q$

- We know that for any propositions p,q,r, $((p
 ightarrow q) \wedge p)
 ightarrow q$ is a tautology.
- So, the initial argument is a valid argument.

伺下 イヨト イヨト

• Argument:

$$p \rightarrow q$$

 p
 $\therefore q$

- We know that for any propositions p, q, r, $((p \rightarrow q) \land p) \rightarrow q$ is a tautology.
- So, the initial argument is a valid argument.
- Moreover, if we plug in any propositions into p and q such that the premises p → q and p are true for these propositions, then concluding q from these premises is a valid argument.
- This is called an *argument form*. The validity of an argument follows from the validity of the argument form.

Definition (Argument and argument form)

An *argument* in propositional logic is a sequence of propositions. All but the final proposition in the argument are called *premises* and the final proposition is called the *conclusion*. An argument is valid if the truth of all its premises implies that the conclusion is true.

An *argument form* in propositional logic is a sequence of compound propositions involving propositional variables. An argument form is *valid* if no matter which particular propositions are substituted for the propositional variables in its premises, the conclusion is true if the premises are all true.

• How do we show that an argument form is valid?

Definition (Argument and argument form)

An *argument* in propositional logic is a sequence of propositions. All but the final proposition in the argument are called *premises* and the final proposition is called the *conclusion*. An argument is valid if the truth of all its premises implies that the conclusion is true.

An *argument form* in propositional logic is a sequence of compound propositions involving propositional variables. An argument form is *valid* if no matter which particular propositions are substituted for the propositional variables in its premises, the conclusion is true if the premises are all true.

- How do we show that an argument form is valid?
 - Construct a truth table. However, this could be tedious.
- We first show the validity of some simple argument forms. These are called *rules of inference*. These may be used to show the validity of more complex argument forms.

Rule of inference	Tautology	Name
$\frac{p}{p \to q}$	$[p \land (p \to q)] \to ?$	Modus ponens
$ \begin{array}{c} \neg q \\ \underline{p \rightarrow q} \\ \hline \vdots \neg? \end{array} $	$[\neg q \land (p ightarrow q)] ightarrow ?$	Modus tollens
$p \to q$ $q \to r$ $\therefore?$	$[(p \to q) \land (q \to r)] \to ?$	Hypothetical syllogism
$\frac{p \lor q}{\neg p}$	$[(p \lor q) \land \neg p] \to ?$	Disjunctive syllogism

・ 同 ト ・ ヨ ト ・ ヨ ト

Rule of inference	Tautology	Name
$\frac{p}{p \to q}$	$[p \land (p ightarrow q)] ightarrow q$	Modus ponens
$ \begin{array}{c} \neg q \\ \underline{p \rightarrow q} \\ \hline \vdots \neg p \end{array} $	$[\neg q \land (p ightarrow q)] ightarrow \neg p$	Modus tollens
$p \to q$ $q \to r$ $\therefore p \to r$	$[(p \to q) \land (q \to r)] \to (p \to r)$	Hypothetical syllogism
$\frac{p \lor q}{\neg p}$	$[(p \lor q) \land \neg p] ightarrow (q)$	Disjunctive syllogism

・ 同 ト ・ ヨ ト ・ ヨ ト

Rule of inference	Tautology	Name
<u> </u>	$p \rightarrow ?$	Addition
$\frac{p \land q}{\therefore ?}$	$(p \land q) \rightarrow ?$	Simplification
<i>P</i> <u>q</u> ∴?	$[(p) \land (q)] \rightarrow ?$	Conjunction
$ \begin{array}{c} p \lor q \\ \neg p \lor r \\ \hline \vdots? \end{array} $	$[(p \lor q) \land (\neg p \lor r)] \rightarrow ?$	Resolution

▲□ > < E > < E >

Rule of inference	Tautology	Name
$\frac{p}{\therefore p \lor q}$	$p ightarrow (p \lor q)$	Addition
$\frac{p \land q}{\therefore p}$	$(p \land q) ightarrow p$	Simplification
$\frac{p}{q}$ $\therefore p \land q$	$[(p) \land (q)] ightarrow (p \land q)$	Conjunction
$ \frac{p \lor q}{\neg p \lor r} $ $ \frac{\neg p \lor r}{\therefore q \lor r} $	$[(p \lor q) \land (\neg p \lor r)] \to (q \lor r)$	Resolution

▲□ > < E > < E >

• Which rule of inference is used in the argument:

If it rains today, then we will not have a barbecue today. If we do not have a barbecue today, then we will have a barbecue tomorrow. Therefore, if it rains today, then we will have barbecue tomorrow. • Which rule of inference is used in the argument:

If it rains today, then we will not have a barbecue today. If we do not have a barbecue today, then we will have a barbecue tomorrow. Therefore, if it rains today, then we will have barbecue tomorrow.

- Show that the hypothesis:
 - "It is not sunny this afternoon and it is colder than yesterday."
 - "We will go swimming only if it is sunny."
 - "If we do not go swimming, then we will take a canoe trip."
 - "If we take a canoe trip, then we will be home by sunset."
- lead to the conclusion:
 - "We will be home by sunset."

- Show that the following argument is valid. If today is tuesday, I have a test in Mathematics or economics. If my Economics Professor is sick, I will not have a test in Economics. Today is tuesday and my Economics Professor is sick. Therefore I have a test in Mathematics.
- Show that the following argument is valid. If Mohan is a lawyer, then he is ambitious. If Mohan is an early riser, then he does not like idlies. If Mohan is ambitious, then he is an early riser. Then if Mohan is a lawyer, then he does not like idlies.

Resolution Principle

Ragesh Jaiswal, CSE, IIT Delhi CSL202: Discrete Mathematical Structures

→ ∃ → < ∃ →</p>

- *Resolution Principle* is another way of showing that an argument is correct.
- Definitions:
 - Literal: A variable or a negation of a variable is called a literal.
 - <u>Sum and Product</u>: A disjunction of literals is called a sum and a conjunction of literals is called a product.
 - <u>Clause</u>: A disjunction of literals is called a clause.
 - <u>Resolvent</u>: For any two clauses C_1 and C_2 , if there is a literal L_1 in C_1 that is complementary to literal L_2 in C_2 , then delete L_1 and L_2 from C_1 and C_2 respectively and construct the disjunction of the remaining clauses. The constructed clause is a resolvent of C_1 and C_2 .
 - $C_1 = P \lor Q \lor R$
 - $C_2 = \neg P \lor \neg S \lor T$
 - What is a resolvent of C₁ and C₂?

伺下 イヨト イヨト

- *Resolution Principle* is another way of showing that an argument is correct.
- Definitions:
 - Literal: A variable or a negation of a variable is called a literal.
 - <u>Sum and Product</u>: A disjunction of literals is called a sum and a conjunction of literals is called a product.
 - <u>Clause</u>: A disjunction of literals is called a clause.
 - <u>Resolvent</u>: For any two clauses C_1 and C_2 , if there is a literal L_1 in C_1 that is complementary to literal L_2 in C_2 , then delete L_1 and L_2 from C_1 and C_2 respectively and construct the disjunction of the remaining clauses. The constructed clause is a resolvent of C_1 and C_2 .
 - $C_1 = P \lor Q \lor R$
 - $C_2 = \neg P \lor \neg S \lor T$
 - What is a resolvent of C_1 and C_2 ? $Q \lor R \lor \neg S \lor T$

・吊 ・ チョ・ ・ ヨ・

Theorem

Given two clauses C_1 and C_2 , a resolvent C of C_1 and C_2 is a logical consequence of C_1 and C_2 .

- Example: Modus ponens $(P \land (P \rightarrow Q) \rightarrow Q)$
 - C₁: P
 - C_2 : $\neg P \lor Q$
 - The resolvent of C_1 and C_2 is Q which is a logical consequence of C_1 and C_2 .

伺下 イヨト イヨト

Theorem

Given two clauses C_1 and C_2 , a resolvent C of C_1 and C_2 is a logical consequence of C_1 and C_2 .

Definition (Resolution principle and refutation)

Given a set S of clauses, a (resolution) deduction of C from S is a finite sequence $C_1, ..., C_k$ of clauses such that each C_i either is a clause in S or a resolvent of clauses preceding C and $C_k = C$. A deduction of \Box (empty clause) is called a *refutation*.

Theorem

Given two clauses C_1 and C_2 , a resolvent C of C_1 and C_2 is a logical consequence of C_1 and C_2 .

Definition (Resolution principle and refutation)

Given a set S of clauses, a (resolution) deduction of C from S is a finite sequence $C_1, ..., C_k$ of clauses such that each C_i either is a clause in S or a resolvent of clauses preceding C and $C_k = C$. A deduction of \Box (empty clause) is called a *refutation* of a proof of S.

 If there is an argument where P₁,..., P_r are the premises and C is the conclusion, to get a proof using resolution principle, put P₁,..., P_r in clause form and add to it ¬C in clause form. From this sequence, if □ can be derived, the argument is valid. If there is an argument where P₁, ..., P_r are the premises and C is the conclusion, to get a proof using resolution principle, put P₁, ..., P_r in clause form and add to it ¬C in clause form. From this sequence, if □ can be derived, the argument is valid.

• Example:

$$T \to (M \lor E)$$
$$S \to \neg E$$
$$T \land S$$
$$\therefore M$$

• What are the clauses?

• Example:

$$T \to (M \lor E)$$

$$S \to \neg E$$

$$T \land S$$

$$\therefore M$$

•
$$C_1: \neg T \lor M \lor E$$

• $C_2: \neg S \lor \neg E$
• $C_3: T$
• $C_4: S$
• $C_5: \neg M$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

• Example:

$$T \to (M \lor E)$$

$$S \to \neg E$$

$$T \land S$$

$$\therefore M$$

_

•
$$C_1: \neg T \lor M \lor E$$

• $C_2: \neg S \lor \neg E$
• $C_3: T$
• $C_4: S$
• $C_5: \neg M$
• $C_6: \neg T \lor M \lor \neg S$

(resolvent of C_1 and C_2)

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

• Example:

$$T \to (M \lor E)$$

$$S \to \neg E$$

$$T \land S$$

$$\therefore M$$

•
$$C_1: \neg T \lor M \lor E$$

• $C_2: \neg S \lor \neg E$
• $C_3: T$
• $C_4: S$
• $C_5: \neg M$
• $C_6: \neg T \lor M \lor \neg S$

(resolvent of C_1 and C_2) (resolvent of C_3 and C_6)

直 ト イヨト イヨト

• Example:

$$T \to (M \lor E)$$

$$S \to \neg E$$

$$T \land S$$

$$\therefore M$$

•
$$C_1: \neg T \lor M \lor E$$

• $C_2: \neg S \lor \neg E$
• $C_3: T$
• $C_4: S$
• $C_5: \neg M$
• $C_6: \neg T \lor M \lor \neg S$

• C₈ : M

(resolvent of C_1 and C_2) (resolvent of C_3 and C_6) (resolvent of C_4 and C_7)

• • = • • = •

• Example:

$$T \to (M \lor E)$$

$$S \to \neg E$$

$$T \land S$$

$$\therefore M$$

•
$$C_1$$
: $\neg T \lor M \lor E$

•
$$C_2: \neg S \lor \neg E$$

•
$$C_3 : T$$

•
$$C_4 : S$$

•
$$C_5 : \neg M$$

•
$$C_6: \neg T \lor M \lor \neg S$$

•
$$C_7: M \vee \neg S$$

•
$$C_8 : M$$

• C₉ : □

(resolvent of C_1 and C_2) (resolvent of C_3 and C_6) (resolvent of C_4 and C_7) (resolvent of C_5 and C_8)

伺 ト く ヨ ト く ヨ ト

• Hence, from the resolution principle, the argument is valid.

End

Ragesh Jaiswal, CSE, IIT Delhi CSL202: Discrete Mathematical Structures

・ロト ・部 ト ・ヨト ・ヨト