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Logic
Propositional logic

Definition (Tautology and Contradiction)

A compound proposition that is always true, no matter what the
truth values of the proposition that occurs in it, is called a
tautology. A compound proposition that is always false is called a
contradiction. A compound proposition that is neither a tautology
nor a contradiction is called a contingency.

Examples:

(p ∨ ¬p) is a tautology.
(p ∧ ¬p) is a contradiction.

Definition (Logical equivalence)

A compound proposition p and q are called logically equivalent if
p ↔ q is a tautology. The notation p ≡ q denotes that p and q
are logically equivalent.
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Logic
Propositional logic

Definition (Tautology and Contradiction)

A compound proposition that is always true, no matter what the
truth values of the proposition that occurs in it, is called a
tautology. A compound proposition that is always false is called a
contradiction. A compound proposition that is neither a tautology
nor a contradiction is called a contingency.

Definition (Logical equivalence)

Compound propositions p and q are called logically equivalent if
p ↔ q is a tautology. The notation p ≡ q denotes that p and q
are logically equivalent.

Show that p and q are logically equivalent if and only if the
columns giving their truth values match.

Show that ¬(p ∧ q) ≡ ¬p ∨ ¬q.
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Logic
Propositional logic

Definition (Tautology and Contradiction)

A compound proposition that is always true, no matter what the truth
values of the proposition that occurs in it, is called a tautology. A
compound proposition that is always false is called a contradiction. A
compound proposition that is neither a tautology nor a contradiction is
called a contingency.

Definition (Logical equivalence)

Compound propositions p and q are called logically equivalent if p ↔ q
is a tautology. The notation p ≡ q denotes that p and q are logically
equivalent.

Show that p and q are logically equivalent if and only if the columns
giving their truth values match.
Show that ¬(p ∧ q) ≡ ¬p ∨ ¬q.
Show that p → q ≡ ¬p ∨ q.
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Logic
Propositional logic

Equivalence Name
p ∧ T ≡? Identity laws
p ∨ F ≡?

p ∨ T ≡? Domination laws
p ∧ F ≡?

p ∨ p ≡? Idempotent laws
p ∧ p ≡?

¬(¬p) ≡? Double negation law

p ∨ q ≡? Commutative laws
p ∧ q ≡?

(p ∨ q) ∨ r ≡? Associative laws
(p ∧ q) ∧ r ≡?

p ∨ (q ∧ r) ≡? Distributive laws
p ∧ (q ∨ r) ≡?

Table: Logical equivalences.
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Logic
Propositional logic

Equivalence Name
p ∧ T ≡ p Identity laws
p ∨ F ≡ p

p ∨ T ≡ T Domination laws
p ∧ F ≡ F

p ∨ p ≡ p Idempotent laws
p ∧ p ≡ p

¬(¬p) ≡ p Double negation law

p ∨ q ≡ q ∨ p Commutative laws
p ∧ q ≡ q ∧ p

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) Associative laws
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) Distributive laws
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

Table: Logical equivalences.
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Logic
Propositional logic

Equivalence Name
¬(p ∧ q) ≡? De Morgan’s laws
¬(p ∨ q) ≡?

p ∨ (p ∧ q) ≡? Absorption laws
p ∧ (p ∨ q) ≡?

p ∨ ¬p ≡? Negation laws
p ∧ ¬p ≡?

p → q ≡?

p ↔ q ≡?

Table: Logical equivalences.
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Logic
Propositional logic

Equivalence Name
¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgan’s laws
¬(p ∨ q) ≡ ¬p ∧ ¬q
p ∨ (p ∧ q) ≡ p Absorption laws
p ∧ (p ∨ q) ≡ p

p ∨ ¬p ≡ T Negation laws
p ∧ ¬p ≡ F

p → q ≡ ¬p ∨ q

p ↔ q ≡ (p → q) ∧ (q → p)

Table: Logical equivalences.
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Logic
Propositional logic

Equivalence Name
p ∧ T ≡ p Identity laws
p ∨ F ≡ p

p ∨ T ≡ T Domination laws
p ∧ F ≡ F

p ∨ p ≡ p Idempotent laws
p ∧ p ≡ p

¬(¬p) ≡ p Double negation law

p ∨ q ≡ q ∨ p Commutative laws
p ∧ q ≡ q ∧ p

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) Associative laws
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) Distributive laws
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgan’s laws
¬(p ∨ q) ≡ ¬p ∧ ¬q
p ∨ (p ∧ q) ≡ p Absorption laws
p ∧ (p ∨ q) ≡ p

p ∨ ¬p ≡ T Negation laws
p ∧ ¬p ≡ F

p → q ≡ ¬p ∨ q

p ↔ q ≡ (p → q) ∧ (q → p)

Table: Logical equivalences.

Argue that for compound propsitions p, q, and r , if p ≡ q and
q ≡ r , then p ≡ r .
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Logic
Propositional logic

Equivalence Name
p ∧ T ≡ p Identity laws
p ∨ F ≡ p

p ∨ T ≡ T Domination laws
p ∧ F ≡ F

p ∨ p ≡ p Idempotent laws
p ∧ p ≡ p

¬(¬p) ≡ p Double negation law

p ∨ q ≡ q ∨ p Commutative laws
p ∧ q ≡ q ∧ p

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) Associative laws
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) Distributive laws
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgan’s laws
¬(p ∨ q) ≡ ¬p ∧ ¬q
p ∨ (p ∧ q) ≡ p Absorption laws
p ∧ (p ∨ q) ≡ p

p ∨ ¬p ≡ T Negation laws
p ∧ ¬p ≡ F

p → q ≡ ¬p ∨ q

p ↔ q ≡ (p → q) ∧ (q → p)

Table: Logical equivalences.

Argue that for compound propsitions p, q, and r , if p ≡ q and
q ≡ r , then p ≡ r .
Show that ¬(p → q) ≡ (p ∧ ¬q).
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Logic
Propositional logic

Equivalence Name
p ∧ T ≡ p Identity laws
p ∨ F ≡ p

p ∨ T ≡ T Domination laws
p ∧ F ≡ F

p ∨ p ≡ p Idempotent laws
p ∧ p ≡ p

¬(¬p) ≡ p Double negation law

p ∨ q ≡ q ∨ p Commutative laws
p ∧ q ≡ q ∧ p

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) Associative laws
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) Distributive laws
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgan’s laws
¬(p ∨ q) ≡ ¬p ∧ ¬q
p ∨ (p ∧ q) ≡ p Absorption laws
p ∧ (p ∨ q) ≡ p

p ∨ ¬p ≡ T Negation laws
p ∧ ¬p ≡ F

p → q ≡ ¬p ∨ q

p ↔ q ≡ (p → q) ∧ (q → p)

Table: Logical equivalences.

Argue that for compound propsitions p, q, and r , if p ≡ q and
q ≡ r , then p ≡ r .
Show that ¬(p → q) ≡ (p ∧ ¬q).
Show that (p → q) ∧ (p → r) ≡ p → (q ∧ r).
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Logic
Propositional logic

Equivalence Name
p ∧ T ≡ p Identity laws
p ∨ F ≡ p

p ∨ T ≡ T Domination laws
p ∧ F ≡ F

p ∨ p ≡ p Idempotent laws
p ∧ p ≡ p

¬(¬p) ≡ p Double negation law

p ∨ q ≡ q ∨ p Commutative laws
p ∧ q ≡ q ∧ p

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) Associative laws
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) Distributive laws
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgan’s laws
¬(p ∨ q) ≡ ¬p ∧ ¬q
p ∨ (p ∧ q) ≡ p Absorption laws
p ∧ (p ∨ q) ≡ p

p ∨ ¬p ≡ T Negation laws
p ∧ ¬p ≡ F

p → q ≡ ¬p ∨ q

p ↔ q ≡ (p → q) ∧ (q → p)

Table: Logical equivalences.

Argue that for compound propsitions p, q, and r , if p ≡ q and
q ≡ r , then p ≡ r .
Show that ¬(p → q) ≡ (p ∧ ¬q).
Show that (p → q) ∧ (p → r) ≡ p → (q ∧ r).
Show that (p ∧ q)→ (p ∨ q) is a tautology.
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Logic

Consider the following two statements:

“All computers connected to the Institute network are
functioning properly.”
“Computer-1 is connected to the Institute network.”

Is it ok to make the conclusion that Computer-1 is functioning
properly?
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Logic

Consider the following two statements:

“All computers connected to the Institute network are
functioning properly.”
“Computer-1 is connected to the Institute network.”

Is it ok to make the conclusion that Computer-1 is functioning
properly?

Can we obtain this conclusion using propositional logic?
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Logic

Consider the following two statements:

“All computers connected to the Institute network are
functioning properly.”
“Computer-1 is connected to the Institute network.”

Is it ok to make the conclusion that Computer-1 is functioning
properly?

Can we obtain this conclusion using propositional logic?

Suppose there are only two computers in the institute.
Consider the following propositions:

p: Computer-1 is connected to the network.
q: Computer-2 is connected to the network.
r : Computer-1 is functioning properly.
s: Computer-2 is functioning properly.

We can write (p → r) ∧ (q → s) ∧ p.
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Logic

Consider the following two statements:

“All computers connected to the Institute network are
functioning properly.”
“Computer-1 is connected to the Institute network.”

Is it ok to make the conclusion that Computer-1 is functioning
properly?

Can we obtain this conclusion using propositional logic?

Suppose there are only two computers on the institute.
Consider the following propositions:

p: Computer-1 is connected to the network.
q: Computer-2 is connected to the network.
r : Computer-1 is functioning properly.
s: Computer-2 is functioning properly.

We can write (p → r) ∧ (q → s) ∧ p.

Now, suppose there are 10,000 computers in the institute?
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Predicate Logic
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Logic
Predicate logic

Consider the following two statements:

“All computers connected to the Institute network are
functioning properly.”
“Computer-1 is connected to the Institute network.”

Is it ok to make the conclusion that Computer-1 is functioning
properly?

Suppose there are 10,000 computers in the institute?

Consider the following concise way of writing propositions:
P(x): x is connected to the institute network.

x can take values Computer-1, Computer-2 etc.
P denotes the predicate “is connected to the institute
network.”
P(x) can be thought of the value of the propositional function
P at x .
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Logic
Predicate logic

Consider the following two statements:

“All computers connected to the Institute network are
functioning properly.”
“Computer-1 is connected to the Institute network.”

Is it ok to make the conclusion that Computer-1 is functioning
properly?

Suppose there are 10,000 computers in the institute?

Consider the following concise way of writing propositions:

P(x): x is connected to the institute network.
R(x): x is functioning properly.
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Logic
Predicate logic

Consider the following two statements:

“All computers connected to the Institute network are
functioning properly.”
“Computer-1 is connected to the Institute network.”

Is it ok to make the conclusion that Computer-1 is functioning
properly?

Suppose there are 10,000 computers in the institute?

Consider the following concise way of writing propositions:

P(x): x is connected to the institute network.
R(x): x is functioning properly.

Are P(x) and R(x) propositions?
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Logic
Predicate logic

Consider the following two statements:

“All computers connected to the Institute network are
functioning properly.”
“Computer-1 is connected to the Institute network.”

Is it ok to make the conclusion that Computer-1 is functioning
properly?

Suppose there are 10,000 computers on the institute network?

Consider the following concise way of writing propositions:

P(x): x is connected to the institute network.
R(x): x is functioning properly.

Are P(x) and R(x) propositions? No, but P(Computer-100)
and R(Computer-200) are propositions.
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Logic
Predicate logic

Consider the following two statements:

“All computers connected to the Institute network are
functioning properly.”
“Computer-1 is connected to the Institute network.”

Is it ok to make the conclusion that Computer-1 is functioning
properly?

Suppose there are 10,000 computers in the institute?

Consider the following concise way of writing propositions:

P(x): x is connected to the institute network.
R(x): x is functioning properly.

Are P(x) and R(x) propositions? No, but P(Computer-100)
and R(Computer-200) are propositions.

What we would like to say is that for any assignment of x from
the set {Computer-1, ..., Computer-10000}, P(x)→ R(x).
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Logic
Predicate logic

Quantification expresses the extent to which a predicate is
true over a range of elements.

There are two types of quantification:

Universal quantification which tells that a predicate is true for
every element under consideration.
Existential quantification tells us that there is one or more
element under consideration for which the predicate is true.

The area of logic that deals with predicates and quantifiers is
called predicate calculus.
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Logic
Predicate logic

Definition (Universal quantification)

The universal quantification of P(x) is the statement “P(x) for all
values of x in the domain.” The notation ∀xP(x) denotes the
universal quantification of P(x). Here ∀ is called the universal
quantifier. We read ∀xP(x) as “for all x P(x).” An element for
which P(x) is false is called a counterexample of ∀xP(x).

Examples:

Let P(x) : x + 1 > x . The truth value of the quantification
∀xP(x) is true when the domain consists of all real numbers.
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Logic
Predicate logic

Definition (Universal quantification)

The universal quantification of P(x) is the statement “P(x) for all
values of x in the domain.” The notation ∀xP(x) denotes the
universal quantification of P(x). Here ∀ is called the universal
quantifier. We read ∀xP(x) as “for all x P(x).” An element for
which P(x) is false is called a counterexample of ∀xP(x).

Examples:

Let P(x) : x + 1 > x . The truth value of the quantification
∀xP(x) is true when the domain consists of all real numbers.
Let P(x) : x2 > 0. What is the truth value of ∀xP(x) when
the domain consists of all integers?
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Logic
Predicate logic

Definition (Universal quantification)

The universal quantification of P(x) is the statement “P(x) for all values
of x in the domain.” The notation ∀xP(x) denotes the universal
quantification of P(x). Here ∀ is called the universal quantifier. We read
∀xP(x) as “for all x P(x).” An element for which P(x) is false is called a
counterexample of ∀xP(x).

Definition (Existential quantification)

The existential quantification of P(x) is the statement “there exists an
element x in the domain such that P(x).” We use the notation ∃xP(x)
for the existential quantification of P(x). Here ∃ is called the existential
quantifier.

Examples:

Let P(x) : x2 ≤ 0. What is the truth value of ∃xP(x) when the
domain consists of all integers?
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Logic
Predicate logic

Quantifiers with restricted domain:
What does the following mean when the domain consists of all
real numbers:

∀x < 0(x2 > 0)
∃z > 0(z2 = 2)
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Logic
Predicate logic

Quantifiers with restricted domain:
What does the following mean when the domain consists of all real
numbers:

∀x < 0(x2 > 0)?
∃z > 0(z2 = 2)?
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Logic
Predicate logic

Quantifiers with restricted domain:
What does the following mean when the domain consists of all real
numbers:

∀x < 0(x2 > 0)?
∃z > 0(z2 = 2)?
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Logic
Predicate logic

Quantifiers with restricted domain:
What does the following mean when the domain consists of all
real numbers:

∀x < 0(x2 > 0): ∀x(x > 0 → x2 > 0)
∃z > 0(z2 = 2): ∃z((z > 0) ∧ (z2 = 2))
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Logic
Predicate logic

Quantifiers with restricted domain:
What does the following mean when the domain consists of all
real numbers:

∀x < 0(x2 > 0): ∀x(x > 0 → x2 > 0)
∃z > 0(z2 = 2): ∃z((z > 0) ∧ (z2 = 2))

More definitions: Binding and free variables, scope.

Binding variable: When a quantifier is used on a variable x , we
say that this occurence of the variable is bound.
Free variable: An occurence of a variable that is not bound by
a quantifier or set equal to a particular value is said to be free.
Scope of variable: The part of a logical expression to which a
quantifier is applied is called the scope of this quantifier.
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Logic
Predicate logic

Quantifiers with restricted domain:
What does the following mean when the domain consists of all
real numbers:

∀x < 0(x2 > 0): ∀x(x > 0 → x2 > 0)
∃z > 0(z2 = 2): ∃z((z > 0) ∧ (z2 = 2))

More definitions: Binding and free variables, scope.

Binding variable: When a quantifier is used on a variable x , we
say that this occurence of the variable is bound.
Free variable: An occurence of a variable that is not bound by
a quantifier or set equal to a particular value is said to be free.
Scope of variable: The part of a logical expression to which a
quantifier is applied is called the scope of this quantifier.
Examples:

∃x(x + y = 1)
∀x(P(x) ∧ Q(x)) ∨ ∀xR(x)
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Logic
Predicate logic

Definition (Logical equivalence)

Statements involving predicates and quantifiers are logically
equivalent if and only if they have the same truth value no matter
which predicates are substituted into these statements and which
domain is used for the variables in these propositional functions.
We use the notation S ≡ T to indicate that two statements S and
T involving predicates and quantifiers are logically equivalent.

Are these logically equivalent:

∀x(P(x) ∧ Q(x)) and ∀xP(x) ∧ ∀xQ(x)?
∃x(P(x) ∨ Q(x)) and ∃xP(x) ∨ ∃xQ(x)?
∀x(P(x) ∨ Q(x)) and ∀xP(x) ∨ ∀xQ(x)?
∃x(P(x) ∧ Q(x)) and ∃xP(x) ∧ ∃xQ(x)?
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Logic
Predicate logic

Definition (Logical equivalence)

Statements involving predicates and quantifiers are logically
equivalent if and only if they have the same truth value no matter
which predicates are substituted into these statements and which
domain is used for the variables in these propositional functions.
We use the notation S ≡ T to indicate that two statements S and
T involving predicates and quantifiers are logically equivalent.

Are these logically equivalent:

∀x(P(x) ∧ Q(x)) and ∀xP(x) ∧ ∀xQ(x)? Yes
∃x(P(x) ∨ Q(x)) and ∃xP(x) ∨ ∃xQ(x)? Yes
∀x(P(x) ∨ Q(x)) and ∀xP(x) ∨ ∀xQ(x)? No
∃x(P(x) ∧ Q(x)) and ∃xP(x) ∧ ∃xQ(x)? No
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Logic
Predicate logic

Definition (Logical equivalence)

Statements involving predicates and quantifiers are logically
equivalent if and only if they have the same truth value no matter
which predicates are substituted into these statements and which
domain is used for the variables in these propositional functions.
We use the notation S ≡ T to indicate that two statements S and
T involving predicates and quantifiers are logically equivalent.

Are these logically equivalent:

¬∀xP(x) and ∃x¬P(x)?
¬∃xP(x) and ∀x¬P(x)?
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Logic
Predicate logic

Definition (Logical equivalence)

Statements involving predicates and quantifiers are logically
equivalent if and only if they have the same truth value no matter
which predicates are substituted into these statements and which
domain is used for the variables in these propositional functions.
We use the notation S ≡ T to indicate that two statements S and
T involving predicates and quantifiers are logically equivalent.

Are these logically equivalent:

¬∀xP(x) and ∃x¬P(x)? Yes
¬∃xP(x) and ∀x¬P(x)? Yes
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Logic
Predicate logic

Definition (Logical equivalence)

Statements involving predicates and quantifiers are logically
equivalent if and only if they have the same truth value no matter
which predicates are substituted into these statements and which
domain is used for the variables in these propositional functions.
We use the notation S ≡ T to indicate that two statements S and
T involving predicates and quantifiers are logically equivalent.

These are logically equivalent:

¬∀xP(x) and ∃x¬P(x)
¬∃xP(x) and ∀x¬P(x)

These rules for negation of quantifiers are called De Morgan’s
laws for quantifiers.

Show that ¬∀x(P(x)→ Q(x)) and ∃x(P(x) ∧ ¬Q(x)) are
logically equivalent.
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Logic
Predicate logic: Applications

Analyze complex natural language sentences.

Example: “Every student in this class has visited either Delhi
or Mumbai.”

Translate system specifications.

Example: “Every mail message larger than one megabyte will
be compressed.”

Deriving conclusions from statements:
Examples: Consider the following statements

“All lions are fierce.”
“Some lions do not drink coffee.”

From the above two sentences can we make the following
conclusion?

“Some fierce creatures do not drink coffee.”
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Logic
Predicate logic

Nested Quantifiers: Two quantifiers are nested if one is within
the scope of the other.

Example:

∀x∃y(x + y = 0).
We may write the above as ∀xQ(x), where
Q(x) = ∃y(x + y = 0).
What does the above statement say when the domain for both
variables consists of all real numbers?
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Logic
Predicate logic

Nested Quantifiers: Two quantifiers are nested if one is within
the scope of the other.

Example:

∀x∃y(x + y = 0).
We may write the above as ∀xQ(x), where
Q(x) = ∃y(x + y = 0).
What does the above statement say when the domain for both
variables consists of all real numbers?

The order of the quantifiers is important. Consider the
following examples:

Let Q(x , y) denote (x + y = 0) and let the domain for x , y
consist of all real numbers.
What is the truth value of ∃y∀xQ(x , y)?
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Logic
Predicate logic

Nested Quantifiers: Two quantifiers are nested if one is within
the scope of the other.

Example:

∀x∃y(x + y = 0).
We may write the above as ∀xQ(x), where
Q(x) = ∃y(x + y = 0).
What does the above statement say when the domain for both
variables consists of all real numbers?

The order of the quantifiers is important. Consider the
following examples:

Let Q(x , y) denote (x + y = 0) and let the domain for x , y
consist of all real numbers.
What is the truth value of ∃y∀xQ(x , y)?
What is the truth value of ∀x∃yQ(x , y)?
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Logic
Predicate logic

Statement When True When False
∀x∀yP(x , y) ? ?
∀y∀xP(x , y)

∀x∃yP(x , y) ? ?

∃x∀yP(x , y) ? ?

∃x∃yP(x , y) ? ?
∃y∃xP(x , y)

Table: Nested quantification of two variables.
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Logic
Predicate logic

Statement When True When False
∀x∀yP(x , y) P(x , y) is True for every

pair x , y
There is a pair x , y for
which P(x , y) is False

∀y∀xP(x , y)

∀x∃yP(x , y) For every x there is a y
such that P(x , y) is True

There is an x such that
P(x , y) is False for every
y

∃x∀yP(x , y) There is an x for which
P(x , y) is True for every
y

For every x there is a
y for which P(x , y) is
False.

∃x∃yP(x , y) There is a pair x , y for
which P(x , y) is True

P(x , y) is False for every
pair x , y

∃y∃xP(x , y)

Table: Nested quantification of two variables.
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