Name: \qquad

ID number: \qquad

There are 2 questions for a total of 10 points.

1. Consider the hash function family $H=\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\}$ where h_{i} 's are defined below and answer the questions that follow.

h_{1}

(a) (1 point) State true or false: H is 2-universal.
(a) True
(b) (2 points) Give reasons for your answer to part (a).

Solution: We have :

1. $\operatorname{Pr}_{h \leftarrow H}[h(a)=h(b)]=1 / 4$
2. $\operatorname{Pr}_{h \leftarrow H}[h(a)=h(c)]=1 / 4$
3. $\operatorname{Pr}_{h \leftarrow H}[h(a)=h(d)]=1 / 4$
4. $\operatorname{Pr}_{h \leftarrow H}[h(b)=h(c)]=0$
5. $\operatorname{Pr}_{h \leftarrow H}[h(b)=h(d)]=0$
6. $\operatorname{Pr}_{h \leftarrow H}[h(c)=h(d)]=1 / 4$

Since all the probabilities are $\leq 1 / 3, H$ is a 2 -universal hash function family.
2. (7 points) Use generating functions to solve the recurrence relation $a_{k}=a_{k-1}+2 a_{k-2}+2^{k}$ with initial conditions $a_{0}=4$ and $a_{1}=12$.

Solution: Let $G(x)=a_{0}+a_{1} x^{1}+a_{2} x^{2}+a_{3} x^{3}+\ldots$. Then we have:

$$
\begin{array}{rll}
G(x) & =a_{0}+ & a_{1} x^{1}+a_{2} x^{2}+a_{3} x^{3}+\ldots \\
x \cdot G(x) & = & a_{0} x^{1}+a_{1} x^{2}+a_{2} x^{3}+\ldots \\
2 x^{2} \cdot G(x) & = & \\
= & 2 a_{0} x^{2}+2 a_{1} x^{3}+2 a_{2} x^{4}+\ldots
\end{array}
$$

This gives:

$$
\begin{aligned}
\left(1-x-2 x^{2}\right) \cdot G(x) & =a_{0}+\left(a_{1}-a_{0}\right) x+\sum_{k=2}^{\infty}\left(a_{k}-a_{k-1}-2 a_{k-2}\right) x^{k} \\
& =4+8 x+\sum_{k=2}^{\infty} 2^{k} x^{k} \quad\left(\text { since } a_{k}=a_{k-1}+2 a_{k-2}+2^{k}\right) \\
& =4+8 x+4 x^{2} \cdot\left(1+(2 x)+(2 x)^{2}+\ldots\right) \\
& =4+8 x+\frac{4 x^{2}}{1-2 x}
\end{aligned}
$$

This implies that:

$$
G(x)=\frac{4-12 x^{2}}{(1+x)(1-2 x)^{2}}=\frac{a}{1+x}+\frac{b x+c}{(1-2 x)^{2}}
$$

We solve for constants a, b, c. We get the following equations:

$$
\begin{aligned}
4 a+b & =-12 \\
-4 a+b+c & =0 \\
a+c & =4
\end{aligned}
$$

which gives $a=-\frac{8}{9}, b=-\frac{76}{9}$, and $c=\frac{44}{9}$. Collecting the coefficients of x^{k}, we get that:

$$
\begin{aligned}
a_{k} & =-\frac{8}{9}(-1)^{k}+\frac{44}{9}(k+1) 2^{k}+\left(-\frac{76}{9}\right) k 2^{k-1} \\
& =-\frac{8}{9}(-1)^{k}+\frac{2}{3} k 2^{k}+\frac{44}{9} 2^{k}
\end{aligned}
$$

