Name: \qquad

ID number: \qquad
There are 1 questions for a total of 10 points.

1. (10 points) Consider the following randomized algorithm. The inputs are a positive integer n and an integer array A containing n distinct integers.
```
FindMax ( }A,n
    - Randomly permute the array }
    - Max \leftarrowA[1]
    - For }i=2\mathrm{ to }
        - if (A[i]>Max)Max \leftarrowA[i]
    - return(Max)
```

What is the expected number of times the value of the variable Max changes within the for loop? Express your answer as a function of n using Θ notation. Show details of your calculations.

Solution: Let X_{i} be an indicator random variable that is 1 if the value of Max gets modified in iteration i and 0 otherwise. The value of Max changes in the $i^{t h}$ iteration iff $A[i]$ is the maximum element in the subarray $A[1], \ldots, A[i]$. This happens with probability $\frac{1}{i}$. So, we have for all $i=$ $2,3, \ldots, n$

$$
\operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{i} \quad \text { and } \quad \mathbf{E}\left[X_{i}\right]=1 \cdot \operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{i}
$$

The number of times the variable Max changes is given by $\sum_{i=2}^{n} X_{i}$. The expectation of this quantity is given by:

$$
\begin{aligned}
\mathbf{E}\left[\sum_{i=2}^{n} X_{i}\right] & =\sum_{i=2}^{n} \mathbf{E}\left[X_{i}\right] \quad \text { (by linearity of expectation) } \\
& =\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \\
& =\Theta(\log n) \quad \text { (using discussion in class) }
\end{aligned}
$$

