Name: \qquad

ID number: \qquad
There are 2 questions for a total of 10 points.

1. (5 points) What is the expected number of bins that are empty when m balls are distributed into n bins uniformly at random?

Solution: Let X_{i} denote the random variable that is 1 if the $i^{\text {th }}$ bin is empty and 0 otherwise. The following holds:

$$
\forall i, \operatorname{Pr}\left[X_{i}\right]=\left(1-\frac{1}{n}\right)^{m}
$$

This is because the probability that a randomly thrown ball does not enter the $i^{\text {th }}$ bin is $(1-1 / n)$ and so the probability that all the m balls miss the $i^{t h}$ bin is $(1-1 / n)^{m}$. The total number of empty bins is given by $\sum_{i=1}^{n} X_{i}$. So, we have

$$
\begin{aligned}
\mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right] & =\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right] \quad \text { (using linearity of expectation) } \\
& =\sum_{i=1}^{n}\left(1 \cdot \operatorname{Pr}\left[X_{i}=1\right]+0 \cdot \operatorname{Pr}\left[X_{i}=0\right]\right) \\
& =n \cdot\left(1-\frac{1}{n}\right)^{m}
\end{aligned}
$$

2. Recall the Longest Increasing Subsequence problem discussed in class. Consider the sequence of numbers in array $A=[14,8,2,7,4,10,6,0,1,16,5,13,3,11,12,15]$. As in the class discussion, let $L(i)$ denote the length of the longest increasing subsequence of $A[1 \ldots n]$ that ends with $A[i]$.
(a) (3 points) Fill the table for L below.

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$L[i]$	1	1	1	2	2	3	3	1	2	4	3	4	3	4	5	6

(b) (2 points) Give a longest increasing subsequence.

$$
\text { (b) } \quad(0,1,5,11,12,15)
$$

