Name:
ID number: \qquad
There are 3 questions for a total of 10 points.

1. Five swimmers training together either swam in a race or watched the others swim.
(a) (1 point) At least how many races must have been scheduled if every swimmer had opportunity to watch all of the others?

$$
\text { (a) } \quad 4
$$

(b) (4 points) Explain your answer in part (a).

Solution: The total number of sightings is $4 \times 5=20$. The maximum number of sightings in a race is $2 \times 3=6$ (when 3 people race and 2 observe or vice-versa). So, at least 4 races are required for all possible sightings. Next, we will show that 4 races are sufficient by describing the four races:
Race 1: A, B, C
Race 2: A, D, E
Race 3: B, D
Race 4: C, E
2. (3 points) What is the conditional probability that exactly three heads appear when a fair coin is flipped five times, given that the first flip came up tails? Write the final answer here and show your calculations in the space below.
2. \qquad

Solution: Let E be the event that exactly three heads appear and let F be the event that the first flip comes up tails. We have $\operatorname{Pr}[F]=1 / 2$ and $\operatorname{Pr}[E \cap F]=4 / 32=1 / 8$. The latter is because $E \cap F=\{T H H H T$, THHTH, THTHH, TTHHH $\}$. So, $\operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]}=\frac{(1 / 8)}{(1 / 2)}=1 / 4$.
3. (2 points) What is the minimum number of balls you need to throw randomly into 15 bins so that with probability at least $1 / 2$, there is a bin with at least two balls. Write the final answer here and show your calculations in the space below.
\qquad
3. $\quad 5$

Solution: Let E_{t} denote the event that all the t balls end up in distinct bins when t balls are thrown. Then we have:

$$
\operatorname{Pr}\left[E_{t}\right]=1 \cdot \frac{14}{15} \cdot \frac{13}{15} \ldots \frac{15-t+1}{15}
$$

The probability that there is a bin with at least two balls is equal to $1-\operatorname{Pr}\left[E_{t}\right]$. The minimum value of t that makes $\operatorname{Pr}\left[E_{t}\right] \leq 1 / 2$ (and hence $1-\operatorname{Pr}\left[E_{t}\right] \geq 1 / 2$) is $t=5$. This is because $\operatorname{Pr}\left[E_{5}\right]<0.5$ and $\operatorname{Pr}\left[E_{4}\right]>0.5$.

