Name:
ID number: \qquad
There are 2 questions for a total of 10 points.

1. (5 points) Prove or disprove: Any strongly connected undirected graph with n vertices and ($n-1$) edges is a tree. ($\overline{\text { Recall that a tree }}$ is a strongly connected undirected graph without cycles.)

Solution: We will prove the statement using mathematical induction. Let $P(n)$ denote the proposition "any strongly connected undirected graph with n vertices and ($n-1$) edges is a tree". We will prove $\forall n, P(n)$ using induction.
Base case: $P(1)$ is true since a graph with 1 vertex and 0 edges is indeed a tree.
Inductive step: Assume that $P(1), P(2), \ldots, P(k)$ are true for an arbitrary $k \geq 1$. We will show that $\overline{P(k+1)}$ is true. Consider any strongly connected graph G with $k+1$ vertices and k edges. Then there is a vertex v with degree exactly 1 . Otherwise the sum of degrees will be $\geq 2(k+1)$ but this is not possible since we know that sum of degrees is equal to $2|E|$ which in this case is $2 k$. Consider the graph G^{\prime} obtained by removing the vertex v and its connecting edge. Note that G^{\prime} is still strongly connected and it has k vertices and $k-1$ edges. Using the induction hypothesis, we get that G^{\prime} is a tree. This implies that G is a tree.
2. (5 points) Give a closed form expression for the function $T(n)$ defined recursively as below:

$$
T(n)= \begin{cases}T(n-1) & \text { if } n>1 \text { and } n \text { is odd } \\ 3 \cdot T(n / 2) & \text { if } n>1 \text { and } n \text { is even } \\ 1 & \text { if } n=1\end{cases}
$$

Also, argue the correctness of your answer using induction.

Solution: $T(n)=3^{\left\lfloor\log _{2} n\right\rfloor}$.
We argue using the following claim.
Claim: For all $k \geq 0$, the following holds: For all $2^{k} \leq n<2^{k+1}, T(n)=3^{k}$.
Proof. We show this by induction on k. Let $P(k)$ denote the given proposition in the claim. We need to show that $\forall k, P(k)$ is true.
Base step: Base case is trivially true since $T(1)=1$.
Inductive step: Suppose $P(1), P(2), \ldots, P(i)$ are true. We will show that $P(i+1)$ is true. Consider any $2^{i+1} \leq n<2^{i+2}$. We need to consider the case when n is even and n is odd.
If n is odd, then $T(n)=T(n-1)=3 \cdot T\left(\frac{n-1}{2}\right)$. Note that $2^{i+1} \leq n-1<2^{i+2}$. So, we have $2^{i} \leq(n-1) / 2<2^{i+1}$. Applying induction hypothesis, we get $T(n)=3^{i+1}$.
If n is even, then $T(n)=3 \cdot T(n / 2)$. Since $2^{i+1} \leq n<2^{i+2}$, we have $2^{i} \leq n / 2<2^{i+1}$. Applying induction hypothesis, we get that $T(n)=3^{i+1}$. This completes the proof of the claim.

The remaining argument follows from the fact that $2^{k} \leq n<2^{k+1}$ iff $k=\left\lfloor\log _{2} n\right\rfloor$.

