Name:

ID number: \qquad

There are 2 questions for a total of 10 points.

1. (2 points) Recall the Euclid-GCD algorithm discussed in class for finding the gcd of positive integers $a \geq b>0$. The algorithm makes a sequence of recursive calls until the second input becomes 0 . For example, the sequence of recursive calls for finding the gcd of 2 and 1 are:

$$
\operatorname{Euclid}-\operatorname{GCD}(2,1) \rightarrow \operatorname{Euclid-GCD}(1,0)
$$

Write down the sequence of recursive calls made when the algorithms is used for finding the gcd of 53 and 991.

```
Solution: Euclid-GCD (991,53) }->\mathrm{ Euclid-GCD (53,37) }->\mathrm{ Euclid-GCD(37, 16) }->\mathrm{ Euclid-GCD (16, 5) }
Euclid-GCD(5, 1) }->\mathrm{ Euclid-GCD(1, 0).
```

2. (8 points) Recall the Euclid-GCD (a, b) algorithm discussed in the lectures for finding the gcd of two integers a and b. Prove the following theorem:

Theorem 1 (Lame's theorem). For any integer $k \geq 1$, if $a>b \geq 1$ and $b<F_{k+1}$, then the call Euclid- $G C D(a, b)$ makes fewer than k recursive calls.

Here F_{k} denotes the $k^{t h}$ number in the Fibonacci sequence $(0,1,1,2,3,5,8,13, \ldots)$
(Note that since this question was part of the tutorial sheet, special emphasis will be given to the clarity of your proof while grading.)

Solution: We will prove the statement using strong induction. Consider the following propositional function:
$P(b)$: The number of recursive calls made by the Euclid-GCD algorithm when run with inputs $a \geq b$ with $b<F_{k+1}$ is $<k$.
Basis step: Here we will show that $P(1)$ and $P(2)$ are true.
For any $a>0$, the number of recursive calls is 1 when $b=1$. Furthermore, $b=1<F_{k+1}$ only if $k \geq 2$, and for all such k the number of recursive calls is $<k$. So, $P(1)$ holds.
For any $a>0$, the number of recursive calls is ≤ 2 when $b=2$. This is because in the next recursive call the smaller number will either be 0 or 1 in which case there can be at most 1 more recursive call. Furthermore, $b=2<F_{k+1}$ only if $k \geq 3$, and for all such k the number of recursive calls is $<k$. So, $P(2)$ holds.
Inductive step: We will assume that $P(1), \ldots, P(b-1)$ holds for an arbitrary integer $b \geq 3$ and then show that $P(b)$ holds.
Suppose k is the smallest integer such that $b<F_{k+1}$. This means that $b \geq F_{k}$. We break the analysis into the following two parts:

- $a(\bmod b)<F_{k}$: In this case, after the first recursive call, the pair of numbers that is used for further recursive calls is $(b, a(\bmod b))$. Now since in this case, $a(\bmod b)<b$ and $a(\bmod b)<$ F_{k}, using the induction hypothesis, we get that the number of further recursive calls is $<(k-1)$ and hence the total number of recursive calls is $<(k-1)+1=k$.
- $a(\bmod b) \geq F_{k}$: In this case, the pair of numbers after the first recursive call is $(b, a(\bmod b))$. Let the pair after the second recursive call be $(a(\bmod b), d)$. Then, since $a(\bmod b) \geq F_{k}$ and $b<F_{k+1}$, we have $d<b+1-a(\bmod b) \leq F_{k+1}-F_{k}=F_{k-1}$. Moreover, since $d<b$, we can apply the inductive hypothesis to conclude that the total number of recursive calls is $<(k-2)+2=k$.

The above two cases shows that $P(b)$ is true. So, using the principle of strong induction, we conclude that $P(n)$ holds for all values of $n \geq 1$. This concludes the proof of Lame's Theorem.

