Name: _____

ID number:

There are 3 questions for a total of 10 points.

- 1. Answer the following questions:
 - (a) (1 point) <u>State true or false</u>: Let f(n), g(n) be functions mapping positive integers to positive real numbers such that f(n) = O(g(n)). Then $3^{f(n)} = O(3^{g(n)})$.

(a) False

(b) (2 points) Give reason for your answer to part (a).

Solution: Consider f(n) = 2n and g(n) = n. For these functions we can show that f(n) = O(g(n)) since for all $n \ge 1$, $f(n) \le 2 \cdot g(n)$. However, $3^{f(n)} = 3^{2n}$ and $3^{g(n)} = 3^n$. For any constant c > 0, if c < 1, then $3^{f(n)} > c \cdot 3^{g(n)}$ for all n > 0. Otherwise, we can show that for all $n \ge \lceil \log_3 c \rceil + 1$, $3^{f(n)} > c \cdot 3^{g(n)}$. This is because if $n \ge \lceil \log_3 c \rceil + 1$, then $3^n > c$, which further implies $3^{2n} > c \cdot 3^n$.

- (c) (1 point) <u>State true or false</u>: Let f(n), g(n) be functions mapping positive integers to positive real numbers such that f(n) = O(g(n)). Let f'(n) = f(5n) and g'(n) = g(5n). Then f'(n) = O(g'(n)).
 - (c) **_____True**

(d) (2 points) Give reason for your answer to part (c).

Solution: Since f(n) is O(g(n)), there exists constants c, n_0 such that for all $n \ge n_0, f(n) \le c \cdot g(n)$. This means that for all $n \ge \lceil n_0/5 \rceil, f(5n) \le c \cdot g(5n)$. This means that f(5n) is O(g(5n)).

2. (1 point) Express the running time of the algorithm below in big-O notation.

 $\begin{aligned} \texttt{Alg2}(A,n) \\ \text{- for } i &= 1 \text{ to } n \\ \text{- for } j &= 2i \text{ to } n \\ \text{- } A[i] \leftarrow A[j] + 1 \end{aligned}$

2.	$O(n^2)$	[!])
	(/

- 3. Answer the following:
 - (a) (1 point) <u>State true or false</u>: For any positive integers m, n and integers a, b, c, d, if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{n}$, then $ac \equiv bd \pmod{mn}$.

(a) **False**

(b) (2 points) Give reason for your answer to part (a).

Solution: We disprove the statement given in part (a) using the following counterexamples: m = 2, n = 4 and a = 1, b = 3, c = 1, d = 5. So, we have $1 \equiv 3 \pmod{2}$ and $1 \equiv 5 \pmod{4}$ but $1 \not\equiv 15 \pmod{8}$.