Name:

ID number: \qquad
There are 3 questions for a total of 10 points.

1. Answer the following questions:
(a) (1 point) State true or false: Let $f(n), g(n)$ be functions mapping positive integers to positive real numbers such that $f(n)=O(g(n))$. Then $3^{f(n)}=O\left(3^{g(n)}\right)$.

(a) False

(b) (2 points) Give reason for your answer to part (a).

Solution: Consider $f(n)=2 n$ and $g(n)=n$. For these functions we can show that $f(n)=$ $O(g(n))$ since for all $n \geq 1, f(n) \leq 2 \cdot g(n)$. However, $3^{f(n)}=3^{2 n}$ and $3^{g(n)}=3^{n}$. For any constant $c>0$, if $c<1$, then $3^{f(n)}>c \cdot 3^{g(n)}$ for all $n>0$. Otherwise, we can show that for all $n \geq\left\lceil\log _{3} c\right\rceil+1,3^{f(n)}>c \cdot 3^{g(n)}$. This is because if $n \geq\left\lceil\log _{3} c\right\rceil+1$, then $3^{n}>c$, which further implies $3^{2 n}>c \cdot 3^{n}$.
(c) (1 point) State true or false: Let $f(n), g(n)$ be functions mapping positive integers to positive real numbers such that $f(n)=O(g(n))$. Let $f^{\prime}(n)=f(5 n)$ and $g^{\prime}(n)=g(5 n)$. Then $f^{\prime}(n)=O\left(g^{\prime}(n)\right)$.
(c) True
(d) (2 points) Give reason for your answer to part (c).

Solution: Since $f(n)$ is $O(g(n))$, there exists constants c, n_{0} such that for all $n \geq n_{0}, f(n) \leq$ $c \cdot g(n)$. This means that for all $n \geq\left\lceil n_{0} / 5\right\rceil, f(5 n) \leq c \cdot g(5 n)$. This means that $f(5 n)$ is $O(g(5 n))$.
2. (1 point) Express the running time of the algorithm below in big-O notation.

```
Alg2(A,n)
    - for }i=1\mathrm{ to }
        - for }j=2i to n
            - }A[i]\leftarrowA[j]+
```

2. \qquad
3. Answer the following:
(a) (1 point) State true or false: For any positive integers m, n and integers a, b, c, d, if $a \equiv b(\bmod m)$ and $c \equiv d(\bmod n)$, then $a c \equiv b d(\bmod m n)$.
(a) False
(b) (2 points) Give reason for your answer to part (a).

Solution: We disprove the statement given in part (a) using the following counterexamples: $m=2, n=4$ and $a=1, b=3, c=1, d=5$. So, we have $1 \equiv 3(\bmod 2)$ and $1 \equiv 5(\bmod 4)$ but $1 \not \equiv 15(\bmod 8)$.

