Name: _____

ID number:

There are 2 questions for a total of 10 points.

- 1. Answer the following questions related to set equality. For this question we will use the set identity $A B = A \cap \overline{B}$ that holds for all sets A, B. We will call this "set-difference law".
 - (a) $(2 \frac{1}{2} \text{ points})$ For all sets A, B show that $(A B) \cup (B A) = (A \cup B) \cap (\overline{A \cap B})$ using set identities given in the lecture slides along with the "set-difference law".

Solution: The equality follows from the following chain of equalities: $(A - B) \cup (B - A) = (A \cap \overline{B}) \cup (B \cap \overline{A}) \quad (\text{set-difference law}) \\
= ((A \cap \overline{B}) \cup B) \cap ((A \cap \overline{B}) \cup \overline{A}) \quad (\text{Distributive law}) \\
= ((A \cup B) \cap (\overline{B} \cup B)) \cap ((A \cup \overline{A}) \cap (\overline{B} \cup \overline{A})) \quad (\text{Distributive law}) \\
= ((A \cup B) \cap (U) \cap (U \cap (\overline{B} \cup \overline{A})) \quad (\text{Domination law}) \\
= (A \cup B) \cap (\overline{B} \cup \overline{A}) \quad (\text{Identity law}) \\
= (A \cup B) \cap (\overline{B} \cup \overline{A}) \quad (\text{De Morgan's law}) \\
= (A \cup B) \cap (\overline{A \cup B}) \quad (Commutative law)$

(b) $(2 \frac{1}{2} \text{ points})$ For all sets A, B, C show that $\overline{(A - B) - (B - C)} = \overline{A} \cup B$ using set identities given in the lecture slides along with the "set difference law".

Solution: The equality follows from the following chain of equalities:			
(A-B) - (B-	$\overline{C}) =$	$\overline{(A\cap\overline{B})\cap\overline{(B\cap\overline{C})}}$	(set-difference law)
	=	$\overline{(A\cap\overline{B})}\cup\overline{\overline{(B\cap\overline{C})}}$	(De Morgan law)
	=	$\overline{(A\cap\overline{B})}\cup(B\cap\overline{C})$	(Complementation law)
	=	$(\overline{A}\cup\overline{\overline{B}})\cup(B\cap\overline{C})$	(De Morgan law)
	=	$(\overline{A}\cup B)\cup (B\cap\overline{C})$	(Complementation law)
	=	$(\overline{A} \cup B \cup B) \cap (\overline{A} \cup B \cup \overline{C})$ (Distributive law)	
	=	$(\overline{A} \cup B) \cap (\overline{A} \cup B \cup \overline{C})$ (Idempotent law)	
	=	$(\overline{A} \cup B)$ (Absorpt	ion law)

2. (5 points) Argue that the set $\mathbb{Z}^+ \times \mathbb{Z}^+$ is countable.

Solution: An infinite set is countable if and only if its elements can be listed in a sequence. We list the elements of the set $\mathbb{Z}^+ \times \mathbb{Z}^+$ in a sequence by first listing those tuples $(p,q) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ such that p + q = 2 (there is only one such tuple), then list those tuples $(p,q) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ such that p + q = 3 (there are two such tuples), and so on. So, the first few elements of the sequence is $(1,1), (1,2), (2,1), (3,1), (2,2), (1,3), \dots$ Since all the elements of the set $\mathbb{Z}^+ \times \mathbb{Z}^+$ are in the list, we can conclude that the set is countable.