Name:

ID number: \qquad
There are 2 questions for a total of 10 points.

1. Answer the following questions related to set equality. For this question we will use the set identity $A-B=A \cap \bar{B}$ that holds for all sets A, B. We will call this "set-difference law".
(a) (2 $1 / 2$ points) For all sets A, B show that $(A-B) \cup(B-A)=(A \cup B) \cap(\overline{A \cap B})$ using set identities given in the lecture slides along with the "set-difference law".

Solution: The equality follows from the following chain of equalities:

$$
\begin{array}{rlrl}
(A-B) \cup(B-A) & =(A \cap \bar{B}) \cup(B \cap \bar{A}) \quad \text { (set-difference law) } \\
& =((A \cap \bar{B}) \cup B) \cap((A \cap \bar{B}) \cup \bar{A}) \quad \quad(\text { Distributive law) } \\
& =((A \cup B) \cap(\bar{B} \cup B)) \cap((A \cup \bar{A}) \cap(\bar{B} \cup \bar{A})) \quad \text { (Distributive law) } \\
& =((A \cup B) \cap U) \cap(U \cap(\bar{B} \cup \bar{A})) \quad \text { (Domination law) } \\
& =(A \cup B) \cap(\bar{B} \cup \bar{A}) & \text { (Identity law) } \\
& =(A \cup B) \cap(\overline{B \cup A}) & \text { (De Morgan's law) } \\
& =(A \cup B) \cap(\overline{A \cup B}) & \text { (Commutative law) }
\end{array}
$$

(b) $(21 / 2$ points $)$ For all sets A, B, C show that $\overline{(A-B)-(B-C)}=\bar{A} \cup B$ using set identities given in the lecture slides along with the "set difference law".

Solution: The equality follows from the following chain of equalities:

$$
\begin{array}{rlrl}
\overline{(A-B)-(B-C)} & =\overline{(A \cap \bar{B}) \cap \overline{(B \cap \bar{C})}} & & \text { (set-difference law) } \\
& =\overline{(A \cap \bar{B})} \cup \overline{\overline{(B \cap \bar{C})}} & \text { (De Morgan law) } \\
& =\overline{(A \cap \bar{B})} \cup(B \cap \bar{C}) & & \text { (Complementation law) } \\
& =(\bar{A} \cup \overline{\bar{B}}) \cup(B \cap \bar{C}) & & \text { (De Morgan law) } \\
& =(\bar{A} \cup B) \cup(B \cap \bar{C}) & \text { (Complementation law) } \\
& =(\bar{A} \cup B \cup B) \cap(\bar{A} \cup B \cup \bar{C}) \quad \text { (Distributive law) } \\
& =(\bar{A} \cup B) \cap(\bar{A} \cup B \cup \bar{C}) \quad \text { (Idempotent law) } \\
& =(\bar{A} \cup B) \quad(\text { Absorption law) }
\end{array}
$$

2. (5 points) Argue that the set $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$is countable.

Solution: An infinite set is countable if and only if its elements can be listed in a sequence. We list the elements of the set $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$in a sequence by first listing those tuples $(p, q) \in \mathbb{Z}^{+} \times \mathbb{Z}^{+}$ such that $p+q=2$ (there is only one such tuple), then list those tuples $(p, q) \in \mathbb{Z}^{+} \times \mathbb{Z}^{+}$such that $p+q=3$ (there are two such tuples), and so on. So, the first few elements of the sequence is $(1,1),(1,2),(2,1),(3,1),(2,2),(1,3), \ldots$ Since all the elements of the the set $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$are in the list, we can conclude that the set is countable.

