Name: \qquad

ID number: \qquad
There are 2 questions for a total of 10 points.

1. Are the following valid argument forms? Explain your answer.
(a) $(21 / 2$ points $) \frac{\begin{array}{l}\exists x(P(x) \wedge Q(x)) \\ \forall x(P(x) \rightarrow R(x))\end{array}}{\therefore \exists x(R(x) \wedge \neg Q(x))}$
(b) $\left(21 / 2\right.$ points) $\frac{\forall x \forall y(S(x) \wedge A(x, y) \rightarrow \neg A(y, x))}{\therefore \forall x(A(x, x) \rightarrow \neg S(x))}$

Solution:

(a) We will show that the given argument form is not valid. Let the domain be a set $\{a, b\}$ and P, Q, R over this domain is as follows: $P(a)=$ True; $P(b)=$ False; $Q(a)=$ True; $Q(b)=$ False $; R(a)=$ True $; R(b)=$ False. The hypothesis holds for the above but the conclusion does not. Hence this is not a valid argument form.
(b) We will argue that the given argument for is valid using rules of inference.
(1) $\forall x \forall y(S(x) \wedge A(x, y) \rightarrow \neg A(y, x)) \quad$ (Hypothesis)
(2) $S(a) \wedge A(a, a) \rightarrow \neg A(a, a)$ for an arbitrary a in domain (Universal instantiation)
(3) $\neg S(a) \vee \neg A(a, a) \vee \neg A(a, a) \quad$ (since $p \rightarrow q \equiv \neg p \vee q)$
(4) $\neg S(a) \vee \neg A(a, a) \quad$ (Idempotent law)
(5) $\neg A(a, a) \vee \neg S(a) \quad$ (Commutative law)
(6) $A(a, a) \rightarrow \neg S(a) \quad($ since $p \rightarrow q \equiv \neg p \vee q)$
(7) $\forall x(A(x, x) \rightarrow \neg S(x)) \quad$ (Universal generalization)
2. (5 points) Prove or disprove: For any positive integer n, if n leaves a remainder 3 on being divided by 4 , then n cannot be the sum of squares of two integers.

Solution: We will prove the statement. For the sake of contradiction, assume that there exists integers p and q such that $n=p^{2}+q^{2}$. We will consider the following four exhaustive cases:

1. Both p and q are even: In this case there are integers x, y such that $p=2 k$ and $q=2 y$. This gives $p^{2}+q^{2}=4\left(x^{2}+y^{2}\right)$. This is a number that is divisible by 4 . This is a contradiction since $p^{2}+q^{2}=n$ that leaves remainder 3 when divided by 4 .
2. Exactly one of p or q is odd: WLOG assume that p is even and q is odd. So, there are integers x, y such that $p=2 x$ and $q=2 y+1$. This gives $p^{2}+q^{2}=4\left(x^{2}+y^{2}+y\right)+1$ which is a number that leaves remainder 1 when divided by 4 . This again contradicts with the fact that $p^{2}+q^{2}=n$ leaves a remainder 3 when divided by 4 .
3. Both p and q are odd: In this case there are integers x, y such that $p=2 x+1$ and $q=2 y+1$. This gives $p^{2}+q^{2}=4\left(x^{2}+y^{2}+x+y\right)+2$ which is a number that leaves remainder 2 when divided by 4 . This again contradicts with the fact that $p^{2}+q^{2}=n$ leaves a remainder 3 when divided by 4 .

Thus we can conclude that there does not exist integers p and q such that $n=p^{2}+q^{2}$.

