Name: \qquad

ID number: \qquad
There are 4 questions for a total of 10 points.

1. (2 points) Show that the following compound proposition is a tautology:

$$
(\neg q \wedge(p \rightarrow q)) \rightarrow \neg p
$$

Solution: We will show that $(\neg q \wedge(p \rightarrow q)) \rightarrow \neg p \equiv T$ by showing a chain of equivalences.

$$
\begin{aligned}
(\neg q \wedge(p \rightarrow q)) \rightarrow \neg p & \equiv(\neg q \wedge(\neg p \vee q)) \rightarrow \neg p \quad \text { (using } p \rightarrow q \equiv \neg p \vee q) \\
& \equiv((\neg q \wedge \neg p) \vee(\neg q \wedge q)) \rightarrow \neg p \quad \text { (using distributive law) } \\
& \equiv((\neg q \wedge \neg p) \vee F) \rightarrow \neg p \quad \text { (using negation law) } \\
& \equiv(\neg q \wedge \neg p) \rightarrow \neg p \quad \text { (using identity law) } \\
& \equiv \neg(\neg q \wedge \neg p) \vee \neg p \quad \text { (using } x \rightarrow y \equiv \neg x \vee y) \\
& \equiv q \vee p \vee \neg p \quad \text { (using De Morgan's law) } \\
& \equiv q \vee T \quad \text { (using negation law) } \\
& \equiv T \quad \text { (using identity law) }
\end{aligned}
$$

You could have also shown this using the truth table.
2. (2 points) Show that $(\neg p \rightarrow(q \rightarrow r))$ and $(q \rightarrow p \vee r)$ are logically equivalent.

Solution: We show equivalence of these compound propositions using the following chain of equivalences.

$$
\begin{aligned}
(\neg p \rightarrow(q \rightarrow r)) & \equiv(\neg p \rightarrow(\neg q \vee r)) \quad(\text { using } x \rightarrow y \equiv \neg x \vee y) \\
& \equiv p \vee \neg q \vee r \quad \text { (using } x \rightarrow y \equiv \neg x \vee y) \\
& \equiv \neg q \vee(p \vee r) \quad \text { (using commutative and distributive laws) } \\
& \equiv q \rightarrow(p \vee r) \quad \text { (using } x \rightarrow y \equiv \neg x \vee y)
\end{aligned}
$$

3. (2 points) Let $C(p, q, r)$ denote a compound proposition involving simple propositions p, q, and r. Give a compound proposition $C(p, q, r)$ the truth table of which matches the one given below. (Note that there may be multiple correct answers for this question)

\mathbf{p}	\mathbf{q}	\mathbf{r}	$\mathbf{C}(\mathbf{p}, \mathbf{q}, \mathbf{r})$
T	T	T	T
T	T	F	F
T	F	T	T
F	T	T	F
T	F	F	T
F	T	F	F
F	F	T	T
F	F	F	F

$$
\text { 3. } C(p, q, r)=(p \wedge q \wedge r) \vee(p \wedge \neg q \wedge r) \vee(p \wedge \neg q \wedge \neg r) \vee(\neg p \wedge \neg q \wedge r)
$$

You might have found a more simplified expression for this problem. The purpose of this exercise was to convey that any boolean function can be written as a compound propositions involving \neg, \vee, \wedge. There is a standard method for doing this. Consider all table entries that have T in the last column. For each such table entry, create a conjunction of variables or negations depending on whether the table entry is T or F. Finally, take a disjunction of all such conjunctions. Try proving that the compound proposition created using this way will match the given truth table. (Furthermore, note that since \vee can be written using \neg and \wedge. We can write any boolean function using just \neg and \wedge.)
4. Let $C(x, y)$ be the statement " x and y have chatted over the internet", where the domain of variables x and y consists of all students in your class. Use quantifiers to express the following two statements:
(a) (2 points) There are at least two students in your class who have not chatted with the same person in your class.
(a) $\exists x \exists y((x \neq y) \wedge \forall z(\neg(C(x, z) \vee \neg C(y, z))))$
(b) (2 points) There are two students in the class who between them have chatted with everyone else in the class.

$$
\text { (b) } \quad \exists x \exists y((x \neq y) \wedge \forall z((z \neq x) \wedge z \neq y) \rightarrow(C(x, z) \vee C(y, z)))
$$

