
COL202: Discrete Mathematical Structures (Semester-I-2018-19) Minor-1

Name:

Entry number:

There are 4 questions for a total of 15 points.

1. Answer the following questions on Propositional Logic.

(a) (1/2 point) Fill the truth-table below:

P Q R P ↔ Q Q ∨ ¬R (P ↔ Q)→ (Q ∨ ¬R)
T T T T T T
T T F T T T
T F T F F T
F T T F T T
T F F F T T
F T F F T T
F F T T F F
F F F T T T

(b) (1 point) Consider the following two compound proposition P,Q:

P : (A ∨B)→ C and Q : (¬C → ¬A) ∨ (¬C → ¬B)

Which of the following describe the relationship between P and Q? Circle all the correct choices
and show your reasoning in the space below.

(a) P and Q are equivalent

(b) P → Q

(c) Q→ P

Solution: We solve this using a truth table.

A B C P Q
F F F T T
F F T T T
F T F F T
T F F F T
T T F F F
T F T T T
F T T T T
T T T T T

- P and are not equivalent since the columns for P and Q do not match.
- Q→ P does not hold since in the third row, Q evaluates to T but P evaluates to F .
- P → Q holds since there is no row in which P is T but Q is F .
So, the correct answer is option (b).
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2. Answer the following questions on Predicate Logic.

(a) (4 1/2 points) Consider the following predicates:

1. B(x): x is brilliant.

2. S(x): x studies hard.

3. L(x): x is lucky.

4. C(x, y): x clears the final exam of course y.

5. G(x, y): x gets an A grade in course y.

6. J(x): x sleeps too much.

Express each of the statements using quantifiers and the predicates given above. The domain of
variable x in the above predicates is the set of all students of COL202 and domain of variable y is
the set of all courses being taught at IIT Delhi during Semester-I-2018-19.

Statement Quantified expression

S1 Everyone who clears any final
exam studies hard or is brilliant
or is lucky.

∀x [∃y C(x, y)→ (S(x) ∨B(x) ∨ L(x))]

S2 Everyone who gets an A in some
course has cleared the final exam
of some course.

∀x [∃y G(x, y)→ ∃z C(x, z)]

S3 No one is lucky. ∀x [¬L(x)]

S4 Anyone who sleeps too much
does not study hard.

∀x [J(x)→ ¬S(x)]

S5 If everyone gets an A in some
course, then everyone who sleeps
too much is brilliant.

(∀x ∃y G(x, y))→ (∀p (J(p)→ B(p)))

(b) (1 point) Consider the quantified expressions S1, ..., S5 obtained in the previous part. Use the
expressions obtained in the previous part to replace S1, ..., S5 below and then determine whether it
makes a valid argument form. Answer “yes” or “no”. You do not need to give explanation for this
problem.
S1

S2

S3

S4

∴ S5

(b) True
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Reason (You were not supposed to give this): We obtain the following argument form
by replacing the S1, ..., S5 above.

∀x [∃y C(x, y)→ (S(x) ∨B(x) ∨ L(x))]
∀x [∃y G(x, y)→ ∃z C(x, z)]
∀x [¬L(x)]
∀x [J(x)→ ¬S(x)]
∴ (∀x ∃y G(x, y))→ (∀w (J(w)→ B(w)))

We will show that the above argument form is valid using rules of inference:

1. ∀x [∃y C(x, y)→ (S(x) ∨B(x) ∨ L(x))] (Premise)

2. ∀x [∃y G(x, y)→ ∃z C(x, z)] (Premise)

3. ∀x [¬L(x)] (Premise)

4. ∀x [J(x)→ ¬S(x)] (Premise)

5. ∃y C(s, y)→ (S(s) ∨B(s) ∨ L(s)) for an arbitrary student s
(From (1) using Universal instantiation)

6. ∃y G(s, y)→ ∃z C(s, z)
(From (2) using Universal instantiation)

7. ∃y G(s, y)→ (S(s) ∨B(s) ∨ L(s))
(From (5) and (6) using modus ponens)

8. ∀x [∃y G(x, y)→ (S(x) ∨B(x) ∨ L(x))]
(From (7) using Universal generalization)

9. ∀x [(∀y ¬G(x, y)) ∨ S(x) ∨B(x) ∨ L(x)]
(From (8) using De Morgan’s law for quantifiers and p→ q ≡ p ∨ q)

10. (∀y ¬G(s, y)) ∨ S(s) ∨B(s) ∨ L(s) for an arbitrary student s
(From (9) using Universal generalization)

11. ¬L(s)
(From (3) using Universal generalization)

12. (∀y ¬G(s, y)) ∨ S(s) ∨B(s)
(Resolvent of (10) and (11))

13. ∀x [¬J(x) ∨ ¬S(x)]
(From (4) using p→ q ≡ p ∨ q)

14. ¬J(s) ∨ ¬S(s)
(From (13) using Universal generalization)

15. (∀y ¬G(s, y)) ∨ ¬J(s) ∨B(s)
(Resolvent of (12) and (14))

16. ∃x [(∀y ¬G(x, y)) ∨ ¬J(s) ∨B(s)]
(From (15) using existential generalization)

17. ∀w ∃x [(∀y ¬G(x, y)) ∨ ¬J(w) ∨B(w)]
(From (16) using universal generalization)

18. (∃x ∀y¬G(x, y)) ∨ (∀w (J(w)→ B(w)))
(From (18) using p→ q ≡ p ∨ q)

19. (∀x ∃y G(x, y))→ ∀w (J(w)→ B(w))
(From (19) using p→ q ≡ p ∨ q and De Morgan’s law for quantifiers)

Note that step (16) is a correct but a bit unconventional application of existential generalization.
In general, if we have a statement P (s) ∨Q(s) that holds for arbitrary s in the domain, then
P (s)∨ (∃x Q(x)) ≡ ∃x [P (s)∨Q(x)] also holds for an arbitrary element s of the domain. This
is the fact that we have used here.
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(c) (2 1/2 points) Consider the quantified expressions S1, ..., S4 obtained in part (a). Use the expressions
obtained in part (a) to replace S1, ..., S4 below and then determine whether it makes a valid argument
form. Explain your answer. (If your answer is “yes”, then you need to show all steps while using
rules of inference)

S1

S2

S3

S4

∴ ∀x [(∃y G(x, y))→ (J(x)→ B(x))]

Solution: We obtain the following argument form by replacing the S1, ..., S4 above.

∀x [∃y C(x, y)→ (S(x) ∨B(x) ∨ L(x))]
∀x [∃y G(x, y)→ ∃z C(x, z)]
∀x [¬L(x)]
∀x [J(x)→ ¬S(x)]
∴ ∀x [(∃y G(x, y))→ (J(x)→ B(x))]

We will show that the above argument form is valid using rules of inference:

1. ∀x [∃y C(x, y)→ (S(x) ∨B(x) ∨ L(x))] (Premise)

2. ∀x [∃y G(x, y)→ ∃z C(x, z)] (Premise)

3. ∀x [¬L(x)] (Premise)

4. ∀x [J(x)→ ¬S(x)] (Premise)

5. ∃y C(s, y)→ (S(s) ∨B(s) ∨ L(s)) for an arbitrary student s
(From (1) using Universal instantiation)

6. ∃y G(s, y)→ ∃z C(s, z)
(From (2) using Universal instantiation)

7. ∃y G(s, y)→ (S(s) ∨B(s) ∨ L(s))
(From (5) and (6) using modus ponens)

8. ∀x [∃y G(x, y)→ (S(x) ∨B(x) ∨ L(x))]
(From (7) using Universal generalization)

9. ∀x [(∀y ¬G(x, y)) ∨ S(x) ∨B(x) ∨ L(x)]
(From (8) using De Morgan’s law for quantifiers and p→ q ≡ p ∨ q)

10. (∀y ¬G(s, y)) ∨ S(s) ∨B(s) ∨ L(s) for an arbitrary student s
(From (9) using Universal generalization)

11. ¬L(s)
(From (3) using Universal generalization)

12. (∀y ¬G(s, y)) ∨ S(s) ∨B(s)
(Resolvent of (10) and (11))

13. ∀x [¬J(x) ∨ ¬S(x)]
(From (4) using p→ q ≡ p ∨ q)

14. ¬J(s) ∨ ¬S(s)
(From (13) using Universal generalization)
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15. (∀y ¬G(s, y)) ∨ ¬J(s) ∨B(s)
(Resolvent of (12) and (14))

16. ∀x [(∀y ¬G(x, y)) ∨ ¬J(x) ∨B(x)]
(From (15) using Universal generalization)

17. ∀x [(∃y G(x, y))→ (J(x)→ B(x))]
(From (16) using p→ q ≡ p ∨ q)
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3. (3 points) Prove or disprove: Let f : N×N→ N be a bijection and let h : N×N×N→ N be a function
defined as h(a, b, c) = f(f(a, b), c). Then h is a bijection from N× N× N to N.

Solution: We will prove that the given statement holds. To show that h is a bijection, we need to
show that h is one-to-one and onto.

Claim 1: h is a one-to-one function.

Proof. From the definition of one-to-one functions, we need to argue that for any inputs (a, b, c), (a′, b′, c′) ∈
N×N×N, if h(a, b, c) = h(a′, b′, c′), then a = a′, b = b′, c = c′. Indeed, h(a, b, c) = h(a′, b′, c′) implies
that f(f(a, b), c) = f(f(a′, b′), c′). Since f is one-to-one, this implies that f(a, b) = f(a′, b′) and
c = c′. Now using the fact that f(a, b) = f(a′, b′) and that f is one-to-one, we get that a = a′ and
b = b′. So, we get that if h(a, b, c) = h(a′, b′, c′), then a = a′, b = b′, and c = c′. This completes the
proof of the claim.

Claim 2: h is onto.

Proof. Using the definition of onto functions, we need to argue that for any r ∈ N, there exists
(a, b, c) ∈ N × N × N such that h(a, b, c) = r. Note that since f is an onto function, there exists
(r′, c′) ∈ N×N such that f(r′, c′) = r. Again, using the fact that f in an onto function, there exists
(a′, b′) ∈ N×N such that f(a′, b′) = r′. This means that h(a′, b′, c′) = f(f(a′, b′), c′) = f(r′, c′) = r.
This completes the proof of the claim.

From Claim 1 and Claim 2, we conclude that h is a bijection.
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4. (2 1/2 points) Recall the definition of the big-O notation given in the lectures:

Let f(n) and g(n) denote functions mapping positive integers to positive real numbers. The
function f(n) is said to be O(g(n)) if and only if there exists constants C, n0 > 0 such that
for all n ≥ n0, f(n) ≤ C · g(n).

Prove or disprove: For any functions f : Z+ → R+ and g : Z+ → R+ if f(n) is O(g(n)), then 5f(n) is

O(5g(n)).

Solution: We will disprove the statement. Consider f(n) = 2n and g(n) = n. For these functions
we can show that f(n) = O(g(n)) since for all n ≥ 1, f(n) ≤ 2 · g(n). However, 5f(n) = 52n and
5g(n) = 5n. For any constant c > 0, if c < 1, then 5f(n) > c · 5g(n) for all n > 0, otherwise we can
show that for all n ≥ dlog5 ce+ 1, 5f(n) > c · 5g(n). This is because if n ≥ dlog5 ce+ 1, then 5n > c,
which further implies 52n > c · 5n.
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