Name: \qquad

Entry number: \qquad

There are 4 questions for a total of 15 points.

1. Answer the following questions on Propositional Logic.
(a) ($1 / 2$ point) Fill the truth-table below:

P	Q	R	$P \leftrightarrow Q$	$Q \vee \neg R$	$(P \leftrightarrow Q) \rightarrow(Q \vee \neg R)$
T	T	T	T	T	T
T	T	F	T	T	T
T	F	T	F	F	T
F	T	T	F	T	T
T	F	F	F	T	T
F	T	F	F	T	T
F	F	T	T	F	F
F	F	F	T	T	T

(b) (1 point) Consider the following two compound proposition P, Q :

$$
P:(A \vee B) \rightarrow C \quad \text { and } \quad Q:(\neg C \rightarrow \neg A) \vee(\neg C \rightarrow \neg B)
$$

Which of the following describe the relationship between P and Q ? Circle all the correct choices and show your reasoning in the space below.
(a) P and Q are equivalent
(b) $P \rightarrow Q$
(c) $Q \rightarrow P$

Solution: We solve this using a truth table.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{P}	\mathbf{Q}
F	F	F	T	T
F	F	T	T	T
F	T	F	F	T
T	F	F	F	T
T	T	F	F	F
T	F	T	T	T
F	T	T	T	T
T	T	T	T	T

- P and are not equivalent since the columns for P and Q do not match.
- $Q \rightarrow P$ does not hold since in the third row, Q evaluates to T but P evaluates to F.
- $P \rightarrow Q$ holds since there is no row in which P is T but Q is F.

So, the correct answer is option (b).
2. Answer the following questions on Predicate Logic.
(a) (4 $1 / 2$ points) Consider the following predicates:

1. $B(x): x$ is brilliant.
2. $S(x): x$ studies hard.
3. $L(x): x$ is lucky.
4. $C(x, y): x$ clears the final exam of course y.
5. $G(x, y): x$ gets an A grade in course y.
6. $J(x): x$ sleeps too much.

Express each of the statements using quantifiers and the predicates given above. The domain of variable x in the above predicates is the set of all students of COL202 and domain of variable y is the set of all courses being taught at IIT Delhi during Semester-I-2018-19.

	Statement	Quantified expression
S_{1}	Everyone who clears any final exam studies hard or is brilliant or is lucky.	$\forall x[\exists y C(x, y) \rightarrow(S(x) \vee B(x) \vee L(x))]$
S_{2}	Everyone who gets an A in some course has cleared the final exam of some course.	$\forall x[\exists y G(x, y) \rightarrow \exists z C(x, z)]$
S_{3}	No one is lucky.	$\forall x[\neg L(x)]$
S_{4}	Anyone who sleeps too much does not study hard.	$\forall x[J(x) \rightarrow \neg S(x)]$
S_{5}	If everyone gets an A in some course, then everyone who sleeps too much is brilliant.	$(\forall x \exists y G(x, y)) \rightarrow(\forall p(J(p) \rightarrow B(p)))$

(b) (1 point) Consider the quantified expressions S_{1}, \ldots, S_{5} obtained in the previous part. Use the expressions obtained in the previous part to replace S_{1}, \ldots, S_{5} below and then determine whether it makes a valid argument form. Answer "yes" or "no". You do not need to give explanation for this problem.
S_{1}
S_{2}
S_{3}
$\frac{S_{4}}{\therefore S_{5}}$
(b) True

Reason (You were not supposed to give this): We obtain the following argument form by replacing the S_{1}, \ldots, S_{5} above.

```
    \(\forall x[\exists y C(x, y) \rightarrow(S(x) \vee B(x) \vee L(x))]\)
\(\forall x[\exists y G(x, y) \rightarrow \exists z C(x, z)]\)
\(\forall x[\neg L(x)]\)
\(\forall x[J(x) \rightarrow \neg S(x)]\)
\(\therefore(\forall x \exists y G(x, y)) \rightarrow(\forall w(J(w) \rightarrow B(w)))\)
```

We will show that the above argument form is valid using rules of inference:

1. $\forall x[\exists y C(x, y) \rightarrow(S(x) \vee B(x) \vee L(x))]$
2. $\forall x[\exists y G(x, y) \rightarrow \exists z C(x, z)]$
3. $\forall x[\neg L(x)]$
4. $\forall x[J(x) \rightarrow \neg S(x)]$
5. $\exists y C(s, y) \rightarrow(S(s) \vee B(s) \vee L(s))$ for an arbitrary student s
(From (1) using Universal instantiation)
6. $\exists y G(s, y) \rightarrow \exists z C(s, z)$
(From (2) using Universal instantiation)
7. $\exists y G(s, y) \rightarrow(S(s) \vee B(s) \vee L(s))$
(From (5) and (6) using modus ponens)
8. $\forall x[\exists y G(x, y) \rightarrow(S(x) \vee B(x) \vee L(x))]$
(From (7) using Universal generalization)
9. $\forall x[(\forall y \neg G(x, y)) \vee S(x) \vee B(x) \vee L(x)]$
(From (8) using De Morgan's law for quantifiers and $p \rightarrow q \equiv p \vee q$)
10. $(\forall y \neg G(s, y)) \vee S(s) \vee B(s) \vee L(s)$ for an arbitrary student s
(From (9) using Universal generalization)
11. $\neg L(s)$
(From (3) using Universal generalization)
12. $(\forall y \neg G(s, y)) \vee S(s) \vee B(s)$
(Resolvent of (10) and (11))
13. $\forall x[\neg J(x) \vee \neg S(x)]$
(From (4) using $p \rightarrow q \equiv p \vee q$)
14. $\neg J(s) \vee \neg S(s)$
(From (13) using Universal generalization)
15. $(\forall y \neg G(s, y)) \vee \neg J(s) \vee B(s)$
(Resolvent of (12) and (14))
16. $\exists x[(\forall y \neg G(x, y)) \vee \neg J(s) \vee B(s)]$
(From (15) using existential generalization)
17. $\forall w \exists x[(\forall y \neg G(x, y)) \vee \neg J(w) \vee B(w)]$
(From (16) using universal generalization)
18. $(\exists x \forall y \neg G(x, y)) \vee(\forall w(J(w) \rightarrow B(w)))$
(From (18) using $p \rightarrow q \equiv p \vee q$)
19. $(\forall x \exists y G(x, y)) \rightarrow \forall w(J(w) \rightarrow B(w))$
(From (19) using $p \rightarrow q \equiv p \vee q$ and De Morgan's law for quantifiers)
Note that step (16) is a correct but a bit unconventional application of existential generalization. In general, if we have a statement $P(s) \vee Q(s)$ that holds for arbitrary s in the domain, then $P(s) \vee(\exists x Q(x)) \equiv \exists x[P(s) \vee Q(x)]$ also holds for an arbitrary element s of the domain. This is the fact that we have used here.
(c) ($21 / 2$ points) Consider the quantified expressions S_{1}, \ldots, S_{4} obtained in part (a). Use the expressions obtained in part (a) to replace S_{1}, \ldots, S_{4} below and then determine whether it makes a valid argument form. Explain your answer. (If your answer is "yes", then you need to show all steps while using rules of inference)
S_{1}
S_{2}
S_{3}
S_{3}
S_{4}
$\therefore \therefore x[(\exists y G(x, y)) \rightarrow(J(x) \rightarrow B(x))]$

Solution: We obtain the following argument form by replacing the S_{1}, \ldots, S_{4} above.

$$
\begin{aligned}
& \forall x[\exists y C(x, y) \rightarrow(S(x) \vee B(x) \vee L(x))] \\
& \forall x[\exists y G(x, y) \rightarrow \exists z C(x, z)] \\
& \forall x[\neg L(x)] \\
& \forall x[J(x) \rightarrow \neg S(x)] \\
& \therefore \forall x[(\exists y G(x, y)) \rightarrow(J(x) \rightarrow B(x))]
\end{aligned}
$$

We will show that the above argument form is valid using rules of inference:

1. $\forall x[\exists y C(x, y) \rightarrow(S(x) \vee B(x) \vee L(x))]$
2. $\forall x[\exists y G(x, y) \rightarrow \exists z C(x, z)]$ (Premise)
3. $\forall x[\neg L(x)]$ (Premise)
4. $\forall x[J(x) \rightarrow \neg S(x)]$ (Premise)
5. $\exists y C(s, y) \rightarrow(S(s) \vee B(s) \vee L(s))$ for an arbitrary student s
(From (1) using Universal instantiation)
6. $\exists y G(s, y) \rightarrow \exists z C(s, z)$
(From (2) using Universal instantiation)
7. $\exists y G(s, y) \rightarrow(S(s) \vee B(s) \vee L(s))$
(From (5) and (6) using modus ponens)
8. $\forall x[\exists y G(x, y) \rightarrow(S(x) \vee B(x) \vee L(x))]$
(From (7) using Universal generalization)
9. $\forall x[(\forall y \neg G(x, y)) \vee S(x) \vee B(x) \vee L(x)]$
(From (8) using De Morgan's law for quantifiers and $p \rightarrow q \equiv p \vee q$)
10. $(\forall y \neg G(s, y)) \vee S(s) \vee B(s) \vee L(s)$ for an arbitrary student s
(From (9) using Universal generalization)
11. $\neg L(s)$
(From (3) using Universal generalization)
12. $(\forall y \neg G(s, y)) \vee S(s) \vee B(s)$
(Resolvent of (10) and (11))
13. $\forall x[\neg J(x) \vee \neg S(x)]$
(From (4) using $p \rightarrow q \equiv p \vee q$)
14. $\neg J(s) \vee \neg S(s)$
(From (13) using Universal generalization)
15. $(\forall y \neg G(s, y)) \vee \neg J(s) \vee B(s)$
(Resolvent of (12) and (14))
16. $\forall x[(\forall y \neg G(x, y)) \vee \neg J(x) \vee B(x)]$
(From (15) using Universal generalization)
17. $\forall x[(\exists y G(x, y)) \rightarrow(J(x) \rightarrow B(x))]$
(From (16) using $p \rightarrow q \equiv p \vee q$)
18. (3 points) Prove or disprove: Let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be a bijection and let $h: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be a function

Solution: We will prove that the given statement holds. To show that h is a bijection, we need to show that h is one-to-one and onto.
Claim 1: h is a one-to-one function.
Proof. From the definition of one-to-one functions, we need to argue that for any inputs $(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \in$ $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$, if $h(a, b, c)=h\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$, then $a=a^{\prime}, b=b^{\prime}, c=c^{\prime}$. Indeed, $h(a, b, c)=h\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ implies that $f(f(a, b), c)=f\left(f\left(a^{\prime}, b^{\prime}\right), c^{\prime}\right)$. Since f is one-to-one, this implies that $f(a, b)=f\left(a^{\prime}, b^{\prime}\right)$ and $c=c^{\prime}$. Now using the fact that $f(a, b)=f\left(a^{\prime}, b^{\prime}\right)$ and that f is one-to-one, we get that $a=a^{\prime}$ and $b=b^{\prime}$. So, we get that if $h(a, b, c)=h\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$, then $a=a^{\prime}, b=b^{\prime}$, and $c=c^{\prime}$. This completes the proof of the claim.

Claim 2: h is onto.
Proof. Using the definition of onto functions, we need to argue that for any $r \in \mathbb{N}$, there exists $(a, b, c) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ such that $h(a, b, c)=r$. Note that since f is an onto function, there exists $\left(r^{\prime}, c^{\prime}\right) \in \mathbb{N} \times \mathbb{N}$ such that $f\left(r^{\prime}, c^{\prime}\right)=r$. Again, using the fact that f in an onto function, there exists $\left(a^{\prime}, b^{\prime}\right) \in \mathbb{N} \times \mathbb{N}$ such that $f\left(a^{\prime}, b^{\prime}\right)=r^{\prime}$. This means that $h\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=f\left(f\left(a^{\prime}, b^{\prime}\right), c^{\prime}\right)=f\left(r^{\prime}, c^{\prime}\right)=r$. This completes the proof of the claim.

From Claim 1 and Claim 2, we conclude that h is a bijection.
4. ($2 \frac{1}{2}$ points) Recall the definition of the big-O notation given in the lectures:

Let $f(n)$ and $g(n)$ denote functions mapping positive integers to positive real numbers. The function $f(n)$ is said to be $O(g(n))$ if and only if there exists constants $C, n_{0}>0$ such that for all $n \geq n_{0}, f(n) \leq C \cdot g(n)$.

Prove or disprove: For any functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}^{+}$and $g: \mathbb{Z}^{+} \rightarrow \mathbb{R}^{+}$if $f(n)$ is $O(g(n))$, then $5^{f(n)}$ is $O\left(5^{g(n)}\right)$.

Solution: We will disprove the statement. Consider $f(n)=2 n$ and $g(n)=n$. For these functions we can show that $f(n)=O(g(n))$ since for all $n \geq 1, f(n) \leq 2 \cdot g(n)$. However, $5^{f(n)}=5^{2 n}$ and $5^{g(n)}=5^{n}$. For any constant $c>0$, if $c<1$, then $5^{f(n)}>c \cdot 5^{g(n)}$ for all $n>0$, otherwise we can show that for all $n \geq\left\lceil\log _{5} c\right\rceil+1,5^{f(n)}>c \cdot 5^{g(n)}$. This is because if $n \geq\left\lceil\log _{5} c\right\rceil+1$, then $5^{n}>c$, which further implies $5^{2 n}>c \cdot 5^{n}$.

