COL202: Discrete Mathematical Structures
 Tutorial/Homework: 14

1. Discuss Quiz-11 questions.
2. Complete discussion of Tutorial-13 problems in case needed.
3. We will use the following notion of independence of random variables:

Definition 14.0.1 (Independent random variables) Random variables X, Y on a sample space S are independent iff

$$
\operatorname{Pr}\left[X=r_{1} \quad \text { and } \quad Y=r_{2}\right]=\operatorname{Pr}\left[X=r_{1}\right] \cdot \operatorname{Pr}\left[Y=r_{2}\right] .
$$

Use the above definition in the problem below.
k objects are picked independently at random with replacement from a set of n distinct objects. For $1 \leq i<j \leq k$, let $X_{i j}$ denote the indicator random variable that is 1 if the $i^{\text {th }}$ and $j^{\text {th }}$ objects are the same otherwise 0 . Show that for any $i<j$ and $p<q$ such that $(i, j) \neq(p, q)$, the random variables $X_{i j}$ and $X_{p q}$ are independent.
4. (Coupon-collector problem) Every time you go to the superstore, you get a random coupon out of n distinct coupons. What is the expected number of times you have to visit the store to be able to collect all distinct coupons?
5. (Balls and bins) n balls are thrown randomly into n bins. Let E be the event that no bin has more than $\frac{3 \ln n}{\ln \ln n}$ balls. Show that $\operatorname{Pr}[E] \geq(1-1 / n)$.
6. (Universal Hashing) Hashing is a technique used to store elements from a large universe $U=\{0, \ldots, m-1\}$ using a small table $T=\{0, \ldots, n-1\}$ using a hash function $h: U \rightarrow T$ such that the number of collisions are minimized ${ }^{1}$.

Using a fixed hash function might does not work. So, we use a family of hash functions H and then pick a hash function randomly from this family. A hash function family H is called 2-universal if

$$
\forall x, y \in U, x \neq y, \operatorname{Pr}_{h \leftarrow H}[h(x)=h(y)] \leq 1 / n .
$$

Show how a 2-universal hash function family is useful in hashing and give an example of such a family.

[^0]
[^0]: ${ }^{1}$ Assume that collisions are resolved using auxiliary data structure

