COL202: Discrete Mathematical Structures
 Tutorial/Homework: 09

1. Discuss Quiz-07 (in case required).
2. Problems from the lecture:
(a) Discuss the closure property of multiplication modulo m with respect to \mathbb{Z}_{m}^{\star}.
(b) Complete the three exercises on group theory mentioned in the class (Slide 3 of 20th September).
(c) Prove the theorem of group theory (Slide 4 of 20th September).
3. (a) Generalize the result in part (a) of problem 6 of Tutorial-07; that is, show that if p is a prime, the positive integers less than p, except 1 and $p-1$, can be split into $(p-3) / 2$ pairs of integers such that each pair consists of integers that are inverses of each other.
(b) From part (a) conclude that $(p-1)!\equiv-1(\bmod p)$ whenever p is prime. This result is known as Wilson's theorem.
(c) What can we conclude if n is a positive integer such that $(n-1)$! $\not \equiv-1(\bmod n)$?
4. Let $N=p \cdot q$ for primes p and q. Let $e, d \in \mathbb{Z}_{\phi(N)}^{*}$ such that $e \cdot d \equiv 1(\bmod \phi(N))$, where $\phi(N)=(p-1) \cdot(q-1)$. In the lectures, we have seen that $\forall M \in \mathbb{Z}_{N}^{*},\left(M^{e}\right)^{d} \equiv M(\bmod N)$. Show that this holds for all $M \in \mathbb{Z}_{N}$.
5. Show that we can easily factor N when we know that N is the product of two primes, p and q, and we know the value of $(p-1)(q-1)$.
6. We will use the following definition of cyclic groups.

Definition 9.0.1 (Cyclic group) Let G be a group and let a be any element of this group. Let $\langle a\rangle=\left\{x \in G \mid x=a^{n}\right.$ for some $\left.n \in \mathbb{Z}\right\}$. The group G is called a cyclic group if there exists an element $a \in G$ such that $G=\langle a\rangle$. In this case, a is called the generator of G.
Show that for any prime p, Z_{p}^{*} is a cyclic group.

