COL202: Discrete Mathematical Structures Tutorial/Homework: 08

1. Discuss Quiz-06 (in case required).
2. Design an algorithm that takes as input positive integers a, b, m and outputs a^{b} ($\bmod m$) (input/output is in binary). Discuss the worst-case time complexity of your algorithm.
3. Recall the Euclid- $\operatorname{GCD}(a, b)$ algorithm discussed in the lectures for finding the gcd of two integers a and b. Prove the following theorem:

Theorem 8.0.1 (Lame's theorem) For any integer $k \geq 1$, if $a>b \geq 1$ and $b<F_{k+1}$, then the call Euclid- $\operatorname{GCD}(a, b)$ makes fewer than k recursive calls.
Here F_{k} denotes the $k^{t h}$ number in the Fibonacci sequence ($0,1,1,2,3,5,8,13, \ldots$)
4. You must have seen the following puzzle: You are given two jugs, one of capacity 5 litres and another of capacity 3 litres, and there is an unlimited source of water. Using just these two jugs, can you make sure that the larger jug has exactly 4 litres of water?
(a) Solve the above puzzle.
(b) Now suppose you are given two jugs with capacities S, L that are positive integers. Design an algorithm that takes as input a positive integer B and outputs "Not Possible" if it is not possible to leave B litres of water in any of the two jugs and otherwise it outputs the precise way to make sure that one of the jugs has exactly B litres of water.
5. Discuss the closure property of multiplication modulo m with respect to \mathbb{Z}_{m}^{\star}.
6. Show that if p is prime, the only solutions of $x^{2} \equiv 1(\bmod p)$ are integers x such that $x \equiv 1(\bmod p)$ or $x \equiv-1(\bmod p)$.

