COL202: Discrete Mathematical Structures

Tutorial/Homework: 07

1. Discuss Quiz-05 in case required.
2. Consider the following algorithm that takes as input an integer array A and its size n.

FunnyAlgo (A, n)

- if $\left(n<2^{20}\right)$
- for $i=1$ to $n-1$
- for $j=1$ to i

$$
-A[j+1] \leftarrow A[j]+1
$$

- else
- for $i=2$ to n
$-A[i] \leftarrow A[i]+A[i-1]$
(a) State true or false: The running time is $O\left(n^{2}\right)$?
(b) State true or false: The running time is $\Omega(n)$?
(c) State true or false: The running time is $\Omega\left(n^{2}\right)$?
(d) Write the running time of the algorithm in Θ notation. That is give a tight bound on the worst-case running time of the above algorithm.

3. Consider the following problem:

SAME-OUTPUT: Given descriptions $\langle A\rangle,\langle B\rangle$ of decision algorithms A and B respectively, determine if both algorithms halt with the same output on all inputs.

A decision algorithm is one that either outputs 0 (exclusive-or) 1 . An algorithm P is said to solve the above problem if $P(\langle A\rangle,\langle B\rangle)$ halts and outputs 1 when A and B halt on all inputs with the same output, and it halts and outputs 0 otherwise. Does there exist an algorithm P that solves the problem SAME-OUTPUT?
4. Find counterexamples to each of these statements about congruences:
(a) If $a c \equiv b c(\bmod m)$, where a, b, c, and m are integers with $m \geq 2$, then $a \equiv$ $b(\bmod m)$.
(b) If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, where a, b, c, d, and m are integers with c and d positive and $m \geq 2$, then $a^{c} \equiv b^{d}(\bmod m)$.
5. Show that if a and b are both positive integers, then $\left(2^{a}-1\right)\left(\bmod \left(2^{b}-1\right)\right)=2^{a(\bmod b)}-1$.
6. (a) Show that the positive integers less than 11, except 1 and 10 , can be split into pairs of integers such that each pair consists of integers that are inverses of each other modulo 11.
(b) Use part (a) to show that $10!\equiv-1(\bmod 11)$.
7. Prove that an integer $\left(a_{n-1}, \ldots, a_{0}\right)$ is divisible by 11 if and only if $a_{0}+a_{2}+a_{4}+\ldots \equiv$ $a_{1}+a_{3}+\ldots(\bmod 11)$.

