COL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Advanced Counting Techniques

 Generating functions: solving recurrencesSolve the recurrence relation $a_{k}=3 a_{k-1}$ for $k=1,2, \ldots$ and initial condition $a_{0}=2$.

- Let $G(x)$ be the generating function for the sequence $\left\{a_{k}\right\}$.
- Claim 1: $x G(x)=\sum_{k=1}^{\infty} a_{k-1} x^{k}$.
- Claim 2: $G(x)-3 x G(x)=a_{0}$.
- Claim 3: $G(x)=\sum_{k=0}^{\infty} 2 \cdot 3^{k} \cdot x^{k}$.

Data Structures: Universal Hashing

Data Structures

- How do we design a good hash function?
- A set S of keys from a universe $U=\{0,1, \ldots, m-1\}$ is supposed to be stored in a table of size n with indices $T=\{0,1, \ldots, n-1\}$.
- Assume collisions are resolved using auxiliary data structure.
- What we need is a hash function $h: U \rightarrow T$ with the following main requirements:
(1) The hash function should minimize the number of collisions.
(2) The space used should be proportional to the number of keys stored. (i.e., $n \approx|S|$)

Data Structures

- How do we design a good hash function?
- A set S of keys from a universe $U=\{0,1, \ldots, m-1\}$ is supposed to be stored in a table of size n with indices $T=\{0,1, \ldots, n-1\}$.
- Assume collisions are resolved using auxiliary data structure.
- What we need is a hash function $h: U \rightarrow T$ with the following main requirements:
(1) The hash function should minimize the number of collisions.
(2) The space used should be proportional to the number of keys stored. (i.e., $n \approx|S|$)
- Claim 1: If $m>n$, then for any h there exists a key set S such that h has collision w.r.t. S (i.e., $\exists x, y \in S, h(x)=h(y))$

Data Structures

Universal Hashing

- How do we design a good hash function?
- A set S of keys from a universe $U=\{0,1, \ldots, m-1\}$ is supposed to be stored in a table of size n with indices $T=\{0,1, \ldots, n-1\}$.
- Assume collisions are resolved using auxiliary data structure.
- What we need is a hash function $h: U \rightarrow T$ with the following main requirements:
(1) The hash function should minimize the number of collisions.
(2) The space used should be proportional to the number of keys stored. (i.e., $n \approx|S|$)
- Claim 1: If $m>n$, then for any h there exists a key set S such that h has collision w.r.t. S (i.e., $\exists x, y \in S, h(x)=h(y))$
- Claim 1.1: Any fixed hash function $h: U \rightarrow T$, must map at least $\left\lceil\frac{m}{n}\right\rceil$ elements of U to some index in the set T.

Data Structures
 Universal Hashing

- How do we design a good hash function?
- A set S of keys from a universe $U=\{0,1, \ldots, m-1\}$ is supposed to be stored in a table of size n with indices $T=\{0,1, \ldots, n-1\}$.
- Assume collisions are resolved using auxiliary data structure.
- What we need is a hash function $h: U \rightarrow T$ with the following main requirements:
(1) The hash function should minimize the number of collisions.
(2) The space used should be proportional to the number of keys stored. (i.e., $n \approx|S|$)
- Claim 1: If $m>n$, then for any h there exists a key set S such that h has collision w.r.t. S (i.e., $\exists x, y \in S, h(x)=h(y))$
- Claim 2: For any fixed key set S such that $|S| \leq n$, there exists a hash function such that h has no collisions w.r.t. S.

Data Structures
 \section*{Universal Hashing}

- How do we design a good hash function?
- A set S of keys from a universe $U=\{0,1, \ldots, m-1\}$ is supposed to be stored in a table of size n with indices $T=\{0,1, \ldots, n-1\}$.
- Collisions are resolved using auxiliary data structure.
- What we need is a hash function $h: U \rightarrow T$ with the following main requirements:
(1) The hash function should minimize the number of collisions.
(2) The space used should be proportional to the number of keys stored. (i.e., $n \approx|S|$)
- Claim 1: If $m>n$, then for any h there exists a key set S such that h has collision w.r.t. S (i.e., $\exists x, y \in S, h(x)=h(y))$
- Claim 2: For any fixed key set S such that $|S| \leq n$, there exists a hash function such that h has no collisions w.r.t. S.
- The issue is that the key set S is not known a-priori. That is, before using the data structure.
- Question: How do we solve this problem then?

Data Structures

Universal Hashing

- How do we design a good hash function?
- A set S of keys from a universe $U=\{0,1, \ldots, m-1\}$ is supposed to be stored in a table of size n with indices $T=\{0,1, \ldots, n-1\}$.
- Collisions are resolved using auxiliary data structure.
- What we need is a hash function $h: U \rightarrow T$ with the following main requirements:
(1) The hash function should minimize the number of collisions.
(2) The space used should be proportional to the number of keys stored. (i.e., $n \approx|S|$)
- Claim 1: If $m>n$, then for any h there exists a key set S such that h has collision w.r.t. S (i.e., $\exists x, y \in S, h(x)=h(y))$
- Claim 2: For any fixed key set S such that $|S| \leq n$, there exists a hash function such that h has no collisions w.r.t. S.
- The issue is that the key set S is not known a-priori. That is, before using the data structure.
- Question: How do we solve this problem then?
- Randomly select a hash function from a family H of hash functions.

Data Structures

Universal Hashing

- How do we design a good hash function?
- A set S of keys from a universe $U=\{0,1, \ldots, m-1\}$ is supposed to be stored in a table of size n with indices $T=\{0,1, \ldots, n-1\}$.
- Collisions are resolved using auxiliary data structure.
- What we need is a hash function $h: U \rightarrow T$ with the following main requirements:
(1) The hash function should minimize the number of collisions.
(2) The space used should be proportional to the number of keys stored. (i.e., $n \approx|S|$)
- The issue is that the key set S is not known a-priori. That is, before using the data structure.
- Question: How do we solve this problem then?
- Randomly select a hash function from a family H of hash functions.

Definition (2-universality)

A hash function family H is said to be 2-universal iff:

$$
\forall x, y \in U, x \neq y, \mathbf{P r}_{h \leftarrow H}[h(x)=h(y)] \leq \frac{1}{n}
$$

Data Structures

Universal Hashing

Definition (2-universality)

A hash function family H is said to be 2 -universal iff:

$$
\forall x, y \in U, x \neq y, \operatorname{Pr}_{h \leftarrow H}[h(x)=h(y)] \leq \frac{1}{n} .
$$

- Theorem: Consider hashing using a 2 -universal hash function family. Consider t insert operations, the expected cost of each operation is at most $(1+t / n)$.

Data Structures

Universal Hashing
Definition (2-universality)
A hash function family H is said to be 2 -universal iff:

$$
\forall x, y \in U, x \neq y, \operatorname{Pr}_{h \leftarrow H}[h(x)=h(y)] \leq \frac{1}{n} .
$$

- Theorem: Consider hashing using a 2 -universal hash function family. Consider t insert operations, the expected cost of each operation is at most $(1+t / n)$.
- Proof sketch: Consider any key x. The expected number of keys in location $h(x)$ is at most t / n.
- Question: Can you think of a 2-universal hash function family?

Data Structures

Universal Hashing
Definition (2-universality)
A hash function family H is said to be 2 -universal iff:

$$
\forall x, y \in U, x \neq y, \operatorname{Pr}_{h \leftarrow H}[h(x)=h(y)] \leq \frac{1}{n} .
$$

- Theorem: Consider hashing using a 2 -universal hash function family. Consider t insert operations, the expected cost of each operation is at most $(1+t / n)$.
- Proof sketch: Consider any key x. The expected number of keys in location $h(x)$ is at most t / n.
- Question: Can you think of a 2-universal hash function family?
- Simple answer: The set of all functions from U to T.
- Do you see any issues with using this hash function family?

Data Structures

Universal Hashing

Definition (2-universality)
A hash function family H is said to be 2 -universal iff:

$$
\forall x, y \in U, x \neq y, \operatorname{Pr}_{h \leftarrow H}[h(x)=h(y)] \leq \frac{1}{n} .
$$

- Theorem: Consider hashing using a 2 -universal hash function family. Consider t insert operations, the expected cost of each operation is at most $(1+t / n)$.
- Proof sketch: Consider any key x. The expected number of keys in location $h(x)$ is at most t / n.
- Question: Can you think of a 2-universal hash function family?
- Simple answer: The set of all functions from U to T.
- Do you see any issues with using this hash function family? The description of any hash function from this family is large.
- Question: Can we design a more compact hash function family?

Data Structures

Universal Hashing
Definition (2-universality)
A hash function family H is said to be 2 -universal iff:

$$
\forall x, y \in U, x \neq y, \operatorname{Pr}_{h \leftarrow H}[h(x)=h(y)] \leq \frac{1}{n} .
$$

- Theorem: Consider hashing using a 2 -universal hash function family. Consider t insert operations, the expected cost of each operation is at most $(1+t / n)$.
- A compact 2 -universal hash function family:
- Let $m \leq p \leq 2 m$.
- $H=\left\{h_{a, b} \mid a \in\{1, \ldots, p-1\}, b \in\{0, \ldots, p-1\}\right\}$ and $h_{a, b}(x)=((a x+b) \bmod p) \bmod n$.
- How many functions does H have?

Data Structures

Universal Hashing
Definition (2-universality)
A hash function family H is said to be 2 -universal iff:

$$
\forall x, y \in U, x \neq y, \operatorname{Pr}_{h \leftarrow H}[h(x)=h(y)] \leq \frac{1}{n} .
$$

- Theorem: Consider hashing using a 2 -universal hash function family. Consider t insert operations, the expected cost of each operation is at most $(1+t / n)$.
- A compact 2 -universal hash function family:
- Let $m \leq p \leq 2 m$.
- $H=\left\{h_{a, b} \mid a \in\{1, \ldots, p-1\}, b \in\{0, \ldots, p-1\}\right\}$ and $h_{a, b}(x)=((a x+b) \bmod p) \bmod n$.
- How many functions does H have? $p(p-1)$

Data Structures

Universal Hashing

Definition (2-universality)

A hash function family H is said to be 2-universal iff:

$$
\forall x, y \in U, x \neq y, \operatorname{Pr}_{h \leftarrow H}[h(x)=h(y)] \leq \frac{1}{n} .
$$

- Theorem: Consider hashing using a 2-universal hash function family. Consider t insert operations, the expected cost of each operation is at most $(1+t / n)$.
- A compact 2 -universal hash function family:
- Let $m \leq p \leq 2 m$.
- $H=\left\{h_{a, b} \mid a \in\{1, \ldots, p-1\}, b \in\{0, \ldots, p-1\}\right\}$ and

$$
h_{a, b}(x)=((a x+b) \bmod p) \bmod n
$$

- How many functions does H have? $p(p-1)$
- Theorem: H is 2-universal.

Data Structures

Universal Hashing

Definition (2-universality)

A hash function family H is said to be 2 -universal iff:

$$
\forall x, y \in U, x \neq y, \operatorname{Pr}_{h \leftarrow H}[h(x)=h(y)] \leq \frac{1}{n} .
$$

- Theorem: Consider hashing using a 2 -universal hash function family. Consider t insert operations, the expected cost of each operation is at most $(1+t / n)$.
- A compact 2 -universal hash function family:
- Let $m \leq p \leq 2 m$.
- $H=\left\{h_{a, b} \mid a \in\{1, \ldots, p-1\}, b \in\{0, \ldots, p-1\}\right\}$ and

$$
h_{a, b}(x)=((a x+b) \bmod p) \bmod n
$$

- Theorem: H is 2-universal.

Data Structures

Universal Hashing

- Theorem: H is 2-universal.

Proof sketch

- Let $g_{a, b}(x)=(a x+b) \bmod p$. So, $h_{a, b}(x)=g_{a, b}(x) \bmod n$.
- Consider any $x, y \in\{0, \ldots, p-1\}$ such that $x \neq y$.
- Claim 1: If $h_{a, b}(x)=h_{a, b}(y)$, then $g_{a, b}(x)=g_{a, b}(y) \bmod n$.

Data Structures

Universal Hashing

- Theorem: H is 2-universal.

Proof sketch

- Let $g_{a, b}(x)=(a x+b) \bmod p$. So, $h_{a, b}(x)=g_{a, b}(x) \bmod n$.
- Consider any $x, y \in\{0, \ldots, p-1\}$ such that $x \neq y$.
- Claim 1: If $h_{a, b}(x)=h_{a, b}(y)$, then $g_{a, b}(x)=g_{a, b}(y) \bmod n$.
- Claim 2: For all $\alpha, \beta \in\{0, \ldots, p-1\}$:

$$
\operatorname{Pr}\left[g_{a, b}(x)=\alpha \text { and } g_{a, b}(y)=\beta\right]= \begin{cases}0 & \text { if } \alpha=\beta \\ \frac{1}{p(p-1)} & \text { otherwise }\end{cases}
$$

Data Structures

Universal Hashing

- Theorem: H is 2-universal.

Proof sketch

- Let $g_{a, b}(x)=(a x+b) \bmod p$. So, $h_{a, b}(x)=g_{a, b}(x) \bmod n$.
- Consider any $x, y \in\{0, \ldots, p-1\}$ such that $x \neq y$.
- Claim 1: If $h_{a, b}(x)=h_{a, b}(y)$, then $g_{a, b}(x)=g_{a, b}(y) \bmod n$.
- Claim 2: For all $\alpha, \beta \in\{0, \ldots, p-1\}$:

$$
\operatorname{Pr}\left[g_{a, b}(x)=\alpha \text { and } g_{a, b}(y)=\beta\right]= \begin{cases}0 & \text { if } \alpha=\beta \\ \frac{1}{p(p-1)} & \text { otherwise }\end{cases}
$$

- Claim 3: We have:

$$
\operatorname{Pr}\left[h_{a, b}(x)=h_{a, b}(y)\right]=\frac{\mid\{(\alpha, \beta): \alpha \neq \beta \text { and } \alpha \equiv \beta \bmod n\} \mid}{p(p-1)} \leq \frac{1}{n}
$$

End

