COL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Advanced Counting Techniques

Advanced Counting Techniques

- Tower of Hanoi: Let H_{n} denote the number of moves needed to solve the Tower of Hanoi problem with n disks. Set up a recurrence relation for the sequence $\left\{H_{n}\right\}$.

Peg 1

Peg 2

Peg 3

Advanced Counting Techniques Recurrence relations

- Find a recurrence relation and give initial conditions for the number of bit strings of length n that do not have two consecutive 0s. How many such bit strings are there of length five?

Advanced Counting Techniques

 Recurrence relations- Dynamic Programming: This is an algorithmic technique where a problem is recursively broken down into simpler overlapping subproblems, and the solution is computed using the solutions of the subproblems.
- Problem: Given a sequence of integers, find the length of the longest increasing subsequence of the given sequence.
- Example: The longest increasing subsequence of the sequence $(7,2,8,10,3,6,9,7)$ is $(2,3,6,7)$ and its length is 4.

Advanced Counting Techniques Solving recurrence relations

Definition (Linear homogeneous recurrence)

A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers, and $c_{k} \neq 0$.

- Linear means that that RHS is a sum of linear terms of the previous elements of the sequence.
- $a_{n}=a_{n-1}+a_{n-2}$ is a linear recurrence relation whereas $a_{n}=a_{n-1}+a_{n-2}^{2}$ is not.

Advanced Counting Techniques Solving recurrence relations

Definition (Linear homogeneous recurrence)

A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers, and $c_{k} \neq 0$.

- Linear means that that RHS is a sum of linear terms of the previous elements of the sequence.
- Homogeneous means that there are no terms in the RHS that are not multiples of a_{j} 's.
- $a_{n}=a_{n-1}+a_{n-2}$ is homogeneous whereas

$$
a_{n}=a_{n-1}+a_{n-2}+2 \text { is not. }
$$

Advanced Counting Techniques Solving recurrence relations

Definition (Linear homogeneous recurrence)

A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers, and $c_{k} \neq 0$.

- Linear means that that RHS is a sum of linear terms of the previous elements of the sequence.
- Homogeneous means that there are no terms in the RHS that are not multiples of a_{j} 's.
- The coefficients of all the terms on the RHS are constants.
- The degree is k since a_{n} is expressed as the previous k terms of the sequence.

Advanced Counting Techniques Solving recurrence relations

Definition (Linear homogeneous recurrence)

A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k},
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers, and $c_{k} \neq 0$.

- $a_{n}=r^{n}$ is a solution of the recurrence if and only if

$$
\begin{equation*}
r^{k}-c_{1} r^{k-1}-\ldots-c_{k}=0 \tag{1}
\end{equation*}
$$

- (1) is called the characteristic equation of the recurrence relation.
- The solutions of the characteristic equation are called the characteristic roots of the recurrence relation.

Advanced Counting Techniques

 Solving recurrence relations
Theorem

Let c_{1} and c_{2} be real numbers. Suppose $r^{2}-c_{1} r-c_{2}=0$ has two distinct roots r_{1} and r_{2}. Then the sequence $\left\{a_{n}\right\}$ is a solution of the linear homogeneous recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ if and only if $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$ for all $n=0,1,2, \ldots$, where α_{1} and α_{2} are constants.

Advanced Counting Techniques

Solving recurrence relations

Theorem

Let c_{1} and c_{2} be real numbers. Suppose $r^{2}-c_{1} r-c_{2}=0$ has two distinct roots r_{1} and r_{2}. Then the sequence $\left\{a_{n}\right\}$ is a solution of the linear homogeneous recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ if and only if $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$ for all $n=0,1,2, \ldots$, where α_{1} and α_{2} are constants.

- What is the solution of the recurrence relation $a_{n}=a_{n-1}+2 \cdot a_{n-2}$ with $a_{0}=2$ and $a_{1}=7$?

Advanced Counting Techniques

 Solving recurrence relations
Theorem

Let c_{1} and c_{2} be real numbers. Suppose $r^{2}-c_{1} r-c_{2}=0$ has two distinct roots r_{1} and r_{2}. Then the sequence $\left\{a_{n}\right\}$ is a solution of the linear homogeneous recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ if and only if $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$ for all $n=0,1,2, \ldots$, where α_{1} and α_{2} are constants.

Theorem

Let c_{1} and c_{2} be real numbers with $c_{2} \neq 0$. Suppose that $r^{2}-c_{1} r-c_{2}=0$ has only one root r_{0}. A sequence $\left\{a_{n}\right\}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ if and only if $a_{n}=\alpha_{1} r_{0}^{n}+\alpha_{2} n r_{0}^{n}$, for $n=0,1,2, \ldots$, where α_{1} and α_{2} are constants.

- What is the solution of the recurrence relation $a_{n}=6 a_{n-1}-9 \cdot a_{n-2}$ with $a_{0}=1$ and $a_{1}=6 ?$

Advanced Counting Techniques

 Solving recurrence relations
Theorem

Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Consider the linear homogeneous recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}$. Suppose the characteristic equation of the recurrence relation has k distinct characteristic roots $r_{1}, r_{2}, \ldots, r_{k}$. Then $\left\{a_{n}\right\}$ is a solution of the recurrence relation if and only if $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}+\ldots+\alpha_{k} r_{k}^{n}$ for $n=0,1,2, \ldots$, where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are constants.

- What is the solution of the recurrence relation

$$
\begin{aligned}
& a_{n}=6 a_{n-1}-11 \cdot a_{n-2}+6 a_{n-3} \text { with } a_{0}=2, a_{1}=5, \text { and } \\
& a_{2}=15 ?
\end{aligned}
$$

Advanced Counting Techniques

 Solving recurrence relations
Theorem

Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Consider the linear homogeneous recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}$. Suppose the characteristic equation of the recurrence relation has $t \leq k$ distinct characteristic roots $r_{1}, r_{2}, \ldots, r_{t}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{t}$, respectively, so that $m_{i} \geq 1$ for $i=1,2, \ldots, t$ and $m_{1}+m_{2}+\ldots+m_{t}=k$. Then $\left\{a_{n}\right\}$ is a solution of the recurrence relation if and only if

$$
\begin{aligned}
a_{n}= & \left(\alpha_{1,0}+\alpha_{1,1} n+\ldots+\alpha_{1, m_{1}-1} n^{m_{1}-1}\right) r_{1}^{n} \\
& +\left(\alpha_{2,0}+\alpha_{2,1} n+\ldots+\alpha_{2, m_{2}-1} n^{m_{2}-1}\right) r_{2}^{n} \\
& +\ldots+\left(\alpha_{t, 0}+\alpha_{t, 1} n+\ldots+\alpha_{t, m_{t}-1} n^{m_{t}-1}\right) r_{t}^{n}
\end{aligned}
$$

for $n=0,1,2, \ldots$, where $\alpha_{i, j}$ are constants for $1 \leq i \leq t$ and $0 \leq j \leq m_{i}-1$.

- What is the solution of the recurrence relation

$$
a_{n}=-3 a_{n-1}-3 \cdot a_{n-2}-a_{n-3} \text { with } a_{0}=1, a_{1}=-2, \text { and } a_{2}=-1 ?
$$

Advanced Counting Techniques

Solving recurrence relations

- A linear non-homogeneous recurrence relation with constant coefficients is a recurrence of the form:

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}+F(n),
$$

where $F(n)$ is a function not identically equal to zero and depending only on n.

- The recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}$ is called the associated homogeneous recurrence relation.

Theorem

If $\left\{a_{n}^{(p)}\right\}$ is a particular solution of the non-homogeneous linear recurrence relation with constant coefficients

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}+F(n),
$$

then every solution is of the form $\left\{a_{n}^{(p)}+a_{n}^{(h)}\right\}$, where $\left\{a_{n}^{(h)}\right\}$ is a solution of the associated homogeneous recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

Advanced Counting Techniques

 Solving recurrence relations
Theorem

If $\left\{a_{n}^{(p)}\right\}$ is a particular solution of the non-homogeneous linear recurrence relation with constant coefficients

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}+F(n)
$$

then every solution is of the form $\left\{a_{n}^{(p)}+a_{n}^{(h)}\right\}$, where $\left\{a_{n}^{(h)}\right\}$ is a solution of the associated homogeneous recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

- Find all solutions of the recurrence relation $a_{n}=3 a_{n-1}+2 n$. What is the solution with $a_{1}=3$?

Advanced Counting Techniques

 Solving recurrence relations
Theorem

If $\left\{a_{n}^{(p)}\right\}$ is a particular solution of the non-homogeneous linear recurrence relation with constant coefficients

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}+F(n)
$$

then every solution is of the form $\left\{a_{n}^{(p)}+a_{n}^{(h)}\right\}$, where $\left\{a_{n}^{(h)}\right\}$ is a solution of the associated homogeneous recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

- Find all solutions of the recurrence relation $a_{n}=3 a_{n-1}+2 n$. What is the solution with $a_{1}=3$?
- Findall solutions if the recurrence relation $a_{n}=5 a_{n-1}-6 a_{n-2}+7^{n}$.

Advanced Counting Techniques

 Solving recurrence relations
Theorem

Suppose $\left\{a_{n}\right\}$ satisfies the linear non-homogeneous recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}+F(n)
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers, and

$$
F(n)=\left(b_{t} n^{t}+b_{t-1} n^{t-1}+\ldots+b_{1} n+b_{0}\right) s^{n}
$$

where $b_{0}, b_{1}, \ldots, b_{t}$ are s real numbers. When s is not a root of the characteristic equation of the associated linear homogeneous recurrence relation, there is a particular solution of the form

$$
\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\ldots+p_{1} n+p_{0}\right) s^{n}
$$

When s is a root of this characteristic equation and its multiplicity is m, there is a particular solution of the form

$$
n^{m}\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\ldots+p_{1} n+p_{0}\right) s^{n}
$$

Advanced Counting Techniques

 Solving recurrence relations
Theorem

Suppose $\left\{a_{n}\right\}$ satisfies the linear non-homogeneous recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}+F(n)
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers, and

$$
F(n)=\left(b_{t} n^{t}+b_{t-1} n^{t-1}+\ldots+b_{1} n+b_{0}\right) s^{n}
$$

where $b_{0}, b_{1}, \ldots, b_{t}$ are s real numbers. When s is not a root of the characteristic equation of the associated linear homogeneous recurrence relation, there is a particular solution of the form

$$
\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\ldots+p_{1} n+p_{0}\right) s^{n}
$$

When s is a root of this characteristic equation and its multiplicity is m, there is a particular solution of the form

$$
n^{m}\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\ldots+p_{1} n+p_{0}\right) s^{n}
$$

Advanced Counting Techniques

Divide-and-conquer recurrence relations

Theorem

Let f be an increasing function that satisfies the recurrence relation

$$
f(n)=a \cdot f(n / b)+c
$$

whenever n is divisible by b, where $a \geq 1, b$ is an integer greater than 1 , and c is a positive real number. Then

$$
f(n) \text { is } \begin{cases}O\left(n^{\log _{b} a}\right) & \text { if } a>1 \\ O(\log n) & \text { if } a=1\end{cases}
$$

Furthermore, when $n=b^{k}$ and $a \neq 1$, where k is a positive integer, $f(n)=C_{1} n^{\log _{b} a}+C_{2}$, where $C_{1}=f(1)+c /(a-1)$ and $C_{2}=-c /(a-1)$.

Advanced Counting Techniques

Divide-and-conquer recurrence relations

Theorem (Master Theorem)

Let f be an increasing function that satisfies the recurrence relation

$$
f(n)=a \cdot f(n / b)+c n^{d}
$$

whenever $n=b^{k}$, where k is a positive integer, $a \geq 1, b$ is an integer greater than 1 , and c and d are real numbers with c positive and d nonnegative. Then

$$
f(n) \text { is } \begin{cases}O\left(n^{d}\right) & \text { if } a<b^{d} \\ O\left(n^{d} \log n\right) & \text { if } a=b^{d} \\ O\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}\end{cases}
$$

Advanced Counting Techniques: Generating Functions

Advanced Counting Techniques Generating functions

Theorem (Generating function)

The generating function for the sequence $a_{0}, a_{1}, \ldots, a_{k}, \ldots$ of real numbers is the infinite series

$$
G(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k}+\ldots=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

- We can define generating functions for finite sequences of real numbers by extending a finite sequence $a_{0}, a_{1}, \ldots, a_{n}$ into an infinite sequence by setting $a_{n+1}=0, a_{n+2}=0$, and so on.
- Examples:
- What is the generating function for the sequence $1,1,1,1,1,1$?
- Let m be a positive integer and let $a_{k}=\binom{m}{k}$, for $k=0,1, \ldots, m$. What is the generating function for $a_{0}, a_{1}, \ldots, a_{m}$?

Advanced Counting Techniques Generating functions

Theorem (Generating function)

The generating function for the sequence $a_{0}, a_{1}, \ldots, a_{k}, \ldots$ of real numbers is the infinite series

$$
G(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k}+\ldots=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

- Examples:
- What is the generating function for the sequence $1,1,1,1,1,1$?
- Let m be a positive integer and let $a_{k}=\binom{m}{k}$, for $k=0,1, \ldots, m$. What is the generating function for $a_{0}, a_{1}, \ldots, a_{m}$?
- The function $f(x)=\frac{1}{1-x}$ is the generating function of the sequence $1,1, \ldots$, because $\frac{1}{1-x}=1+x+x^{2}+\ldots$ for $|x|<1$.

Advanced Counting Techniques

 Generating functions
Theorem

Let $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ and $g(x)=\sum_{k=0}^{\infty} b_{k} x^{k}$. Then
$f(x)+g(x)=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) x^{k}$ and
$f(x) g(x)=\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} a_{j} b_{k-j}\right) x^{k}$.

- Let $f(x)=\frac{1}{(1-x)^{2}}$. Find coefficients a_{0}, a_{1}, \ldots in the expansion $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.

Advanced Counting Techniques Generating functions

Definition (Extended binomial coefficient)

Let u be a real number and k a nonnegative integer. Then the extended binomial coefficient $\binom{u}{k}$ is defined by

$$
\binom{u}{k}= \begin{cases}\frac{u(u-1) \ldots(u-k+1)}{k!} & \text { if } k>0 \\ 1 & \text { if } k=0\end{cases}
$$

- Find the value of the extended binomial coefficient $\binom{1 / 2}{3}$.
- Find the value of the extended binomial coefficient $\binom{-n}{r}$.

Advanced Counting Techniques Generating functions

Definition (Extended binomial coefficient)

Let u be a real number and k a nonnegative integer. Then the extended binomial coefficient $\binom{u}{k}$ is defined by

$$
\binom{u}{k}= \begin{cases}\frac{u(u-1) \ldots(u-k+1)}{k!} & \text { if } k>0 \\ 1 & \text { if } k=0\end{cases}
$$

Theorem (Extended binomial theorem)

Let x be a real number with $|x|<1$ and let u be a real number. Then

$$
(1+x)^{u}=\sum_{k=0}^{\infty}\binom{u}{k} x^{k}
$$

- What is the expansion of $(1-x)^{-n}$?

Advanced Counting Techniques

Generating functions

TABLE 1 Useful Generating Functions.	
$G(x)$	a_{k}
$\begin{aligned} (1+x)^{n} & =\sum_{k=0}^{n} C(n, k) x^{k} \\ & =1+C(n, 1) x+C(n, 2) x^{2}+\cdots+x^{n} \end{aligned}$	$C(n, k)$
$\begin{aligned} (1+a x)^{n} & =\sum_{k=0}^{n} C(n, k) a^{k} x^{k} \\ & =1+C(n, 1) a x+C(n, 2) a^{2} x^{2}+\cdots+a^{n} x^{n} \end{aligned}$	$C(n, k) a^{k}$
$\begin{aligned} \left(1+x^{r}\right)^{n} & =\sum_{k=0}^{n} C(n, k) x^{r k} \\ & =1+C(n, 1) x^{r}+C(n, 2) x^{2 r}+\cdots+x^{r n} \end{aligned}$	$C(n, k / r)$ if $r \mid k ; 0$ otherwise
$\frac{1-x^{n+1}}{1-x}=\sum_{k=0}^{n} x^{k}=1+x+x^{2}+\cdots+x^{n}$	1 if $k \leq n ; 0$ otherwise
$\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+\cdots$	1
$\frac{1}{1-a x}=\sum_{k=0}^{\infty} a^{k} x^{k}=1+a x+a^{2} x^{2}+\cdots$	a^{k}
$\frac{1}{1-x^{r}}=\sum_{k=0}^{\infty} x^{r k}=1+x^{\prime}+x^{2 r}+\cdots$	1 if $r \mid k ; 0$ otherwise
$\frac{1}{(1-x)^{2}}=\sum_{k=0}^{\infty}(k+1) x^{k}=1+2 x+3 x^{2}+\cdots$	$k+1$
$\begin{aligned} \frac{1}{(1-x)^{n}} & =\sum_{k=0}^{\infty} C(n+k-1, k) x^{k} \\ & =1+C(n, 1) x+C(n+1,2) x^{2}+\cdots \end{aligned}$	$C(n+k-1, k)=C(n+k-1, n-1)$
$\begin{aligned} \frac{1}{(1+x)^{n}} & =\sum_{k=0}^{\infty} C(n+k-1, k)(-1)^{k} x^{k} \\ & =1-C(n, 1) x+C(n+1,2) x^{2}-\cdots \end{aligned}$	$(-1)^{k} C(n+k-1, k)=(-1)^{k} C(n+k-1, n-1)$
$\begin{aligned} \frac{1}{(1-a x)^{n}} & =\sum_{k=0}^{\infty} C(n+k-1, k) a^{k} x^{k} \\ & =1+C(n, 1) a x+C(n+1,2) a^{2} x^{2}+\cdots \end{aligned}$	$C(n+k-1, k) a^{k}=C(n+k-1, n-1) a^{k}$
$e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$	$1 / k!$
$\ln (1+x)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^{k}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots$	$(-1)^{k+1} / k$

Advanced Counting Techniques Generating functions

- In how many different ways can eight identical cookies be distributed among three distinct children if each child receives at least two cookies and no more than four cookies?
- Use generating functions to determine the number of ways to insert tokens worth $\$ 1, \$ 2$, and $\$ 5$ into a vending machine to pay for an item that costs r dollars in both the cases when the order in which the tokens are inserted does not matter and when the order does matter.
- Use generating functions to find the number of r-combinations from a set with n elements when repetition of elements is allowed.

End

