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Advanced Counting Techniques
Recurrence relations

@ Tower of Hanoi: Let H, denote the number of moves needed
to solve the Tower of Hanoi problem with n disks. Set up a
recurrence relation for the sequence {H,}.
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Advanced Counting Techniques
Recurrence relations

@ Find a recurrence relation and give initial conditions for the
number of bit strings of length n that do not have two
consecutive Os. How many such bit strings are there of length
five?
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Advanced Counting Techniques
Recurrence relations

@ Dynamic Programming: This is an algorithmic technique
where a problem is recursively broken down into simpler
overlapping subproblems, and the solution is computed using
the solutions of the subproblems.

@ Problem: Given a sequence of integers, find the length of the
longest increasing subsequence of the given sequence.

e Example: The longest increasing subsequence of the sequence
(7,2,8,10,3,6,9,7) is (2,3,6,7) and its length is 4.
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Advanced Counting Techniques

Solving recurrence relations

nition (Linear homogeneous recurrence)

A linear homogeneous recurrence relation of degree k with
constant coefficients is a recurrence relation of the form

ap = Clap—1 + Cap—2 + ... + Ckan—x,

where c1, ¢, ..., ¢k are real numbers, and ¢, # 0.

@ Linear means that that RHS is a sum of linear terms of the
previous elements of the sequence.

@ a, = a,_1 + a,—»> is a linear recurrence relation whereas
an = ap_1 + a>_, is not.
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Advanced Counting Techniques

Solving recurrence relations

Definition (Linear homogeneous recurrence)

A linear homogeneous recurrence relation of degree k with
constant coefficients is a recurrence relation of the form

ap = Clap—1 + C2ap—2 + ... + Ckan—k,

where c1, ¢, ..., ¢k are real numbers, and ¢, # 0.

@ Linear means that that RHS is a sum of linear terms of the
previous elements of the sequence.
@ Homogeneous means that there are no terms in the RHS that
are not multiples of a;'s.
@ a, = ap_1 + an,—» is homogeneous whereas
ap = ap_1+ an_2+2is not.
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Advanced Counting Techniques

Solving recurrence relations

Definition (Linear homogeneous recurrence)

A linear homogeneous recurrence relation of degree k with
constant coefficients is a recurrence relation of the form

ap = Clap—1 + C2ap—2 + ... + Ckan—k,

where c1, ¢, ..., ¢k are real numbers, and ¢, # 0.

@ Linear means that that RHS is a sum of linear terms of the
previous elements of the sequence.

e Homogeneous means that there are no terms in the RHS that
are not multiples of a;’s.

@ The coefficients of all the terms on the RHS are constants.

@ The degree is k since a, is expressed as the previous k terms
of the sequence.
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Advanced Counting Techniques

Solving recurrence relations

Definition (Linear homogeneous recurrence)

A linear homogeneous recurrence relation of degree k with constant
coefficients is a recurrence relation of the form

ap = Clap—1 + Cap—2 + ... + Ckan—,

where c1, ¢, ..., ¢k are real numbers, and ¢, # 0.

@ a, = r" is a solution of the recurrence if and only if

rk—Clrk_l—...—CkZO. (1)

@ (1) is called the characteristic equation of the recurrence relation.
@ The solutions of the characteristic equation are called the
characteristic roots of the recurrence relation.
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Advanced Counting Techniques

Solving recurrence relations

Theorem

Let ¢; and c» be real numbers. Suppose r’> — cir — ¢ = 0 has two

distinct roots ry and ry. Then the sequence {a,} is a solution of
the linear homogeneous recurrence relation a, = c1an,—1 + can—» if
and only if a, = a1r{ + apry foralln=0,1,2,..., where oy and
Qip are constants.
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Advanced Counting Techniques
Solving recurrence relations

Let ¢; and c» be real numbers. Suppose r?> — cir — co = 0 has two
distinct roots r; and r. Then the sequence {a,} is a solution of the
linear homogeneous recurrence relation a, = cian—1 + can—» if and only
ifan = aqr +oory foralln=0,1,2,..., where oy and oy are constants.

@ What is the solution of the recurrence relation a, = a,—1 + 2 - ap—2
with ag =2 and a; =77
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Advanced Counting Techniques
Solving recurrence relations

Let ¢; and c» be real numbers. Suppose r?> — cir — co = 0 has two

distinct roots r; and r. Then the sequence {a,} is a solution of the
linear homogeneous recurrence relation a, = cian—1 + c2an—» if and only
ifan = aqr +oory foralln=0,1,2,..., where oy and o are constants.

Theorem

Let ¢; and ¢ be real numbers with c; # 0. Suppose that

r> — cir — o = 0 has only one root ry. A sequence {an} is a solution of
the recurrence relation a, = c1a,—1 + cpan—2 if and only if

an = airy + agnrg, forn=0,1,2, ..., where a; and « are constants.

@ What is the solution of the recurrence relation a, = 6a,_1 —9-a,_»
with ag = 1 and a; = 67
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Advanced Counting Techniques

Solving recurrence relations

Theorem

Let c1, ¢, ..., ck be real numbers. Consider the linear homogeneous
recurrence relation a, = c1ap—1 + ©an—2 + ... + ckan_x. Suppose
the characteristic equation of the recurrence relation has k distinct
characteristic roots ry, ra, ..., rx. Then {ap} is a solution of the
recurrence relation if and only if a, = axr{ + azry + ... + ayry for
n=20,1,2,..., where a1, ay, ...,y are constants.

@ What is the solution of the recurrence relation
a, =6a,_1—11-a,_» + 6a,_3 with ag = 2, a; = 5, and
ay = 157
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Advanced Counting Techniques

Solving recurrence relations

Let c1, ¢, ..., ck be real numbers. Consider the linear homogeneous
recurrence relation a, = ¢c1ap_1 + ¢an_ + ... + ckan_k. Suppose the
characteristic equation of the recurrence relation has t < k distinct
characteristic roots ri, ra, ..., ry with multiplicities my, my, ..., my,
respectively, so that m; > 1 for i = 1,2,....t and m; + my + ... + my = k.
Then {an} is a solution of the recurrence relation if and only if

a, = (aro0+aiin+..+ al,ml_lnml_l)rl”
+(Ck270 +azin+ ...+ Ozz,m2_1nm2_1)r2"
+o.+ (aro+arin+ ...+ at)mt_ln’"‘_l)rt"

forn=0,1,2,..., where o are constants for 1 <i <t and
0<,;<m—1L

@ What is the solution of the recurrence relation
ap=—-3a,.1—3-a,_2—an_3withag=1,a; =-2, and ap = —17
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Advanced Counting Techniques

Solving recurrence relations

@ A linear non-homogeneous recurrence relation with constant
coefficients is a recurrence of the form:

an = Clap-1+ @ap—2 + ... + ckan—k + F(n),

where F(n) is a function not identically equal to zero and depending
only on n.

@ The recurrence relation a, = ciap_1 + ¢ap_2 + ... + Ckap_k is
called the associated homogeneous recurrence relation.

Theorem

If {as,p )} is a particular solution of the non-homogeneous linear
recurrence relation with constant coefficients

an = C1an—1+ Can—2 + ... + ckan—x + F(n),

then every solution is of the form {af,p ) 4+ af,h)}, where {af,h)} is a
solution of the associated homogeneous recurrence relation

ap = C1ap—1 + Cap—2 + ... + Ckan—k-

.
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Advanced Counting Techniques

Solving recurrence relations

Theorem

If {ag,p )} is a particular solution of the non-homogeneous linear
recurrence relation with constant coefficients

ap = C1ap—1+ Qan—2 + ... + ckan—k + F(n),

then every solution is of the form {aE,p ) 4 a,(7h)}, where {as,h)} is a
solution of the associated homogeneous recurrence relation

ap = Clap—1 + Cap—2 + ... + Ckan—k-

@ Find all solutions of the recurrence relation a, = 3a,_1 + 2n. What
is the solution with a; = 37
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Advanced Counting Techniques

Solving recurrence relations

Theorem

If {ag,p )} is a particular solution of the non-homogeneous linear
recurrence relation with constant coefficients

ap = C1apn—1+ Qan—2 + ... + ckan—k + F(n),

then every solution is of the form {aE,’J ) 4 a,(7h)}, where {as,h)} is a
solution of the associated homogeneous recurrence relation

ap = Clap—1 + Cap—2 + ... + Ckan—k-.

@ Find all solutions of the recurrence relation a, = 3a,_1 + 2n. What
is the solution with a; = 37
@ Findall solutions if the recurrence relation a, = 5a,_1 — 6a,_» + 7".
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Advanced Counting Techniques

Solving recurrence relations

Suppose {an} satisfies the linear non-homogeneous recurrence relation

ap = C1ap-1 + Qan—2 + ... + ckan—k + F(n),
where ¢y, ¢y, ..., Ci are real numbers, and
F(n) = (bent + be_1n® =t 4 ... + bin + bg)s",

where by, b1, ..., by are s real numbers. When s is not a root of the
characteristic equation of the associated linear homogeneous recurrence
relation, there is a particular solution of the form

(pen® + pe—1n®™' + ...+ pin + po)s”.

When s is a root of this characteristic equation and its multiplicity is m,
there is a particular solution of the form

n"(pen® + pe—1n® + ..+ pin+ po)s”.
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Advanced Counting Techniques

Solving recurrence relations

Suppose {an} satisfies the linear non-homogeneous recurrence relation

ap = C1ap-1 + Qan—2 + ... + ckan—k + F(n),
where ¢y, ¢y, ..., Ci are real numbers, and
F(n) = (bent + be_1n® =t 4 ... + bin + bg)s",

where by, b1, ..., by are s real numbers. When s is not a root of the
characteristic equation of the associated linear homogeneous recurrence
relation, there is a particular solution of the form

(pen® + pe—1n®™' + ...+ pin + po)s”.

When s is a root of this characteristic equation and its multiplicity is m,
there is a particular solution of the form

n"(pen® + pe—1n® + ..+ pin+ po)s”.
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Advanced Counting Techniques

Divide-and-conquer recurrence relations

Theorem
Let f be an increasing function that satisfies the recurrence relation

f(n)y=a-f(n/b)+c

whenever n is divisible by b, where a > 1, b is an integer greater
than 1, and c is a positive real number. Then

: O(n'°853) jfa > 1
f(n) us { O(logn) ifa=1

Furthermore, when n = b and a # 1, where k is a positive
integer, f(n) = Cyn'8»2 + C,, where C; = f(1) + c¢/(a — 1) and
G =—c/(a—1).
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Advanced Counting Techniques

Divide-and-conquer recurrence relations

Theorem (Master Theorem)

Let f be an increasing function that satisfies the recurrence relation
f(n)=a-f(n/b)+ cn?

whenever n = bX, where k is a positive integer, a> 1, b is an
integer greater than 1, and c and d are real numbers with c
positive and d nonnegative. Then

O(n9) ifa < b?
f(n) is { O(nlogn) ifa= b9
O(n'°gv2)  jf 2> bd.
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Advanced Counting Techniques

Generating functions

Theorem (Generating function)

The generating function for the sequence ag, as, ..., ax, ... of real
numbers is the infinite series

[o¢]
G(x)=ao+ax+ ...+ axk+ .. = Z ax”
k=0

@ We can define generating functions for finite sequences of real
numbers by extending a finite sequence ag, a1, ..., a, into an
infinite sequence by setting ap+1 =0, ap+2 = 0, and so on.

@ Examples:

e What is the generating function for the sequence 1,1,1,1,1,17
o Let m be a positive integer and let ax = (7), for
k=0,1,...,m. What is the generating function for
do, dl, ...y a,,,?
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Advanced Counting Techniques

Generating functions

Theorem (Generating function)

The generating function for the sequence ag, as, ...
numbers is the infinite series

,ak, ... of real

[o¢]
G(x)=ao+ax+...+ axk+ .. = Z ax”

@ Examples:
e What is the generating function for the sequence 1,1,1,1,1,17

) ) ) ) 7
o Let m be a positive integer and let a, = (':) for
k=0,1,...,m. What is the generating function for
do, dly - am?

o The function f( )= i is the generating function of the

sequence 1,1,..., because 3= =1+ x + x> + ... for |x| < 1.
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Advanced Counting Techniques
Generating functions

Let f(x) = >3% o akx and g(x) S0 bkxk. Then
f(x) + g(x) = >3 o(ak + bk )x* and

F()8(x) = S0 (f0 2ibk) x

o Let f(x) = ﬁ Find coefficients ag, a1, ... in the expansion

f(x)=>%"0 agxk.
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Advanced Counting Techniques

Generating functions

Definition (Extended binomial coefficient)

Let u be a real number and k a nonnegative integer. Then the
extended binomial coefficient (}) is defined by

u _ u(u—l)..l.((!u—k—l-l) ifk>0
k 1 if k=0

@ Find the value of the extended binomial coefficient (léz).

e Find the value of the extended binomial coefficient (7").
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Advanced Counting Techniques
Generating functions

Definition (Extended binomial coefficient)

Let u be a real number and k a nonnegative integer. Then the
extended binomial coefficient (Z) is defined by

u _ u(u—l)..l;(!u—k-i-l) ifk>0
k 1 if k=0

Theorem (Extended binomial theorem)

Let x be a real number with |x| < 1 and let u be a real number.

Then N
(1+x)=>" (Z)x".

k=0

e What is the expansion of (1 — x)~"?
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Advanced Counting Techniques

Generating functions

TABLE 1 Useful Generating Functions.

6(x) ax

A+0" =Y Cn " b

=
=1+C0n, Dx +Cn, x4 3"

(+axy =Y Cn kjakxt Con yat
=
=1+ C(n, Dax + C(n, Da’x? +-- - +a"x"

A+ =Y Cn,Rx™ Cln, kfr)ifr | k; 0 otherwise

=
=1+ C(n, D" +Cn, 2™ + -+

2 Lifk < n; 0 otherwise

1ifr | k0 otherwise

k1
=) Clntk-1,0:* Ch+k=1L,K=Cltk-1n-1)
a=om =
=1+C0n, Dx + Ca+ 1,2)2° +
LS k- Lo k- LK) = (1 Cln 4k L —
vy = L Cot kLR (~DHCr+k— 1K) = (~DFC@+k—Ln—1)
=1-C(n, )x +Cln+ 1,267 =+
! = > (n - gk - _ B o
(1 —ax) ’);“ k=1, Rt Clntk=1,0a% =Cln+k=1,n = e
=1+ C(n, Dax + Cln + 1, 2a*s> +
&t 2
= sl vk
=k 2
1k
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Advanced Counting Techniques
Generating functions

@ In how many different ways can eight identical cookies be
distributed among three distinct children if each child receives
at least two cookies and no more than four cookies?

@ Use generating functions to determine the number of ways to
insert tokens worth $1, $2, and $5 into a vending machine to
pay for an item that costs r dollars in both the cases when the
order in which the tokens are inserted does not matter and
when the order does matter.

@ Use generating functions to find the number of
r-combinations from a set with n elements when repetition of
elements is allowed.
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End )
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