COL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Discrete Probability

Definition (Geometric distribution)

A random variable X has a geometric distribution with parameter p if $\Pr[X = k] = (1 - p)^{k-1}p$ for k = 1, 2, 3, ..., where p is a real number with $0 \le p \le 1$.

 Example: Suppose that the probability that a coin comes up tails is p. This coin is flipped repeatedly until it comes up tails. What is the expected number of flips until this coin comes up tails?

Theorem

If the random variable X has the geometric distribution with parameter p, then $\mathbf{E}[X] = 1/p$.

Definition (Independent random variables)

The random variables X and Y on a sample space S are independent if

$$\Pr[X = r_1 \text{ and } Y = r_2] = \Pr[X = r_1] \cdot \Pr[Y = r_2],$$

or in other words, if the probability that $X = r_1$ and $Y = r_2$ equals the product of the probabilities that $X = r_1$ and $Y = r_2$, for all real numbers r_1 and r_2 .

• Example: Let X_1 and X_2 be the random variable denoting the number that appears on two dice when rolled. Are X_1 and X_2 independent?

Definition (Independent random variables)

The random variables X and Y on a sample space S are independent if

$$\Pr[X = r_1 \text{ and } Y = r_2] = \Pr[X = r_1] \cdot \Pr[Y = r_2],$$

or in other words, if the probability that $X = r_1$ and $Y = r_2$ equals the product of the probabilities that $X = r_1$ and $Y = r_2$, for all real numbers r_1 and r_2 .

$\mathsf{Theorem}$

If X and Y are independent random variables on a sample space S, then $\mathbf{E}(XY) = \mathbf{E}(X) \cdot \mathbf{E}(Y)$.

Discrete Probability Expectation and Variance

Theorem

If X and Y are independent random variables on a sample space S, then $\mathbf{E}(XY) = \mathbf{E}(X) \cdot \mathbf{E}(Y)$.

 Does the above theorem hold for non-independent random variables?

Definition (Variance)

Let X be a random variable on a sample space S. The *variance* of X, denoted by $\mathbf{Var}[X]$, is

$$\mathbf{Var}[X] = \sum_{s \in S} (X(s) - \mathbf{E}[X])^2 \cdot p(s).$$

That is, Var[X] is the weighted average of the square of the deviation of X. The standard deviation of X, denoted by $\sigma[X]$ is defined to be $\sqrt{Var[X]}$.

Theorem

If X is a random variable on a sample space S, then $Var[X] = E[X^2] - (E[X])^2$.

Discrete Probability

Expectation and Variance

Definition (Variance)

Let X be a random variable on a sample space S. The variance of X, denoted by $\mathbf{Var}[X]$, is $\mathbf{Var}[X] = \sum_{s \in S} (X(s) - \mathbf{E}[X])^2 \cdot p(s)$. That is, $\mathbf{Var}[X]$ is the weighted average of the square of the deviation of X. The standard deviation of X, denoted by $\sigma[X]$ is defined to be $\sqrt{\mathbf{Var}[X]}$.

Theorem

If X is a random variable on a sample space S, then $Var[X] = E[X^2] - (E[X])^2$.

Theorem

If X is a random variable on a sample space S and $\mathbf{E}[X] = \mu$, then $\mathbf{Var}[X] = \mathbf{E}[(X - \mu)^2]$.

Discrete Probability Expectation and Variance

Theorem

If X is a random variable on a sample space S, then $Var[X] = E[X^2] - (E[X])^2$.

Theorem

If X is a random variable on a sample space S and $\mathbf{E}[X] = \mu$, then $\mathbf{Var}[X] = \mathbf{E}[(X - \mu)^2]$.

• What is the variance of the random variable X, where X is the number that comes up when a fair die is rolled?

Theorem (Bienayme's Formula)

If X and Y are two independent random variables on a sample space S, then $\mathbf{Var}[X+Y] = \mathbf{Var}[X] + \mathbf{Var}[Y]$. Furthermore, if X_i , i=1,2,...,n, with n a positive integer, are pairwise independent random variables on S, then $\mathbf{Var}[X_1+X_2+...+X_n] = \mathbf{Var}[X_1] + \mathbf{Var}[X_2] + ... + \mathbf{Var}[X_n]$.

• What is the variance of the number of successes when n independent Bernoulli trials are performed, where, on each trial, p is the probability of success and q is the probability of failure?

Theorem (Markov's inequality)

Let X be a non-negative random variable on a sample space and a be a positive real number. Then

$$\Pr[X \ge a] \le \mathbf{E}[X]/a$$
.

Theorem (Markov's inequality)

Let X be a non-negative random variable on a sample space and a be a positive real number. Then

$$\Pr[X \ge a] \le \mathsf{E}[X]/a$$
.

Theorem (Chebychev's inequality)

Let X be a random variable on a sample space and a be a positive real number. Then

$$\Pr[|X - \mathbf{E}[X]| \ge a] \le \mathbf{Var}[X]/a^2$$
.

Discrete Probability Deviation from Expectation

Birthday Problem

- Let X_{ij} be an indicator random variable that is 1 if the i^{th} and the j^{th} sample are the same and 0 otherwise.
- Lemma 1: $\mathbf{E}[X_{ij}] = 1/n$.

Discrete Probability Deviation from Expectation

Birthday Problem

- Let X_{ij} be an indicator random variable that is 1 if the i^{th} and the j^{th} sample are the same and 0 otherwise.
- Lemma 1: $\mathbf{E}[X_{ij}] = 1/n$.
- Let $X = \sum_{i < j} X_{ij}$. Note that X denotes the number of distinct pairs of samples that are the same.
- Lemma 2: $\mathbf{E}[X] = \frac{r(r-1)}{2n}$.

Birthday Problem

- Let X_{ij} be an indicator random variable that is 1 if the i^{th} and the j^{th} sample are the same and 0 otherwise.
- Lemma 1: $E[X_{ij}] = 1/n$.
- Let $X = \sum_{i < j} X_{ij}$. Note that X denotes the number of distinct pairs of samples that are the same.
- Lemma 2: $\mathbf{E}[X] = \frac{r(r-1)}{2n}$.
- If $r \approx c \cdot \sqrt{2n}$, then $\mathbf{E}[X] = 10$.
- Lemma 3: $\operatorname{Var}[X_{ij}] = \frac{n-1}{n^2}$.

Birthday Problem

- Let X_{ij} be an indicator random variable that is 1 if the i^{th} and the j^{th} sample are the same and 0 otherwise.
- Lemma 1: $\mathbf{E}[X_{ij}] = 1/n$.
- Let $X = \sum_{i < j} X_{ij}$. Note that X denotes the number of distinct pairs of samples that are the same.
- Lemma 2: $\mathbf{E}[X] = \frac{r(r-1)}{2n}$.
- If $r \approx c \cdot \sqrt{2n}$, then $\mathbf{E}[X] = 10$.
- Lemma 3: $\operatorname{Var}[X_{ij}] = \frac{n-1}{n^2}$.
- Lemma 4: $Var[X] = \sum_{i < j} Var[X_{ij}] = \frac{r(r-1)(n-1)}{2n^2}$.

Birthday Problem

- Let X_{ij} be an indicator random variable that is 1 if the i^{th} and the j^{th} sample are the same and 0 otherwise.
- Lemma 1: $\mathbf{E}[X_{ij}] = 1/n$.
- Let $X = \sum_{i < j} X_{ij}$. Note that X denotes the number of distinct pairs of samples that are the same.
- Lemma 2: $\mathbf{E}[X] = \frac{r(r-1)}{2n}$.
- If $r \approx c \cdot \sqrt{2n}$, then $\mathbf{E}[X] = 10$.
- Lemma 3: $Var[X_{ij}] = \frac{n-1}{n^2}$.
- Lemma 4: $Var[X] = \sum_{i < j} Var[X_{ij}] = \frac{r(r-1)(n-1)}{2n^2}$.
- So, $Var[X] = 10 \cdot (1 1/n)$ when $r \approx c \cdot \sqrt{2n}$.
- Lemma 5: $\Pr[X < 1] < 1/4$.

Theorem (Chernoff-bound)

Let $X_1,...,X_n$ be independent, 0/1 random variables, and let $p_i = \mathbf{E}[X_i]$ for all i=1,2,...,n. Let $X=X_1+X_2+...+X_n$ and let $\mu = \mathbf{E}[X]$. Let $\delta > 0$ be any real number. Then

$$\begin{array}{lcl} \Pr[X > (1+\delta) \cdot \mu] & \leq & \mathrm{e}^{-f(\delta) \cdot \mu}, \ and \\ \Pr[X < (1-\delta) \cdot \mu] & \leq & \mathrm{e}^{-g(\delta) \cdot \mu} \end{array}$$

where
$$f(\delta) = (1 + \delta) \cdot \ln(1 + \delta) - \delta$$
 and $g(\delta) = (1 - \delta) \cdot \ln(1 - \delta) + \delta$.

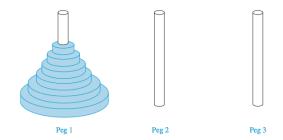
• For all $\delta > 0, g(\delta) \ge \delta^2/2$ and $f(\delta) \ge \frac{\delta^2}{2+\delta}$.

Advanced Counting Techniques

Advanced Counting Techniques

Recurrence relations

• Tower of Hanoi: Let H_n denote the number of moves needed to solve the Tower of Hanoi problem with n disks. Set up a recurrence relation for the sequence $\{H_n\}$.



Advanced Counting Techniques Recurrence relations

 Find a recurrence relation and give initial conditions for the number of bit strings of length n that do not have two consecutive 0s. How many such bit strings are there of length five?

Advanced Counting Techniques Recurrence relations

- Dynamic Programming: This is an algorithmic technique where a problem is recursively broken down into simpler overlapping subproblems, and the solution is computed using the solutions of the subproblems.
- Problem: Given a sequence of integers, find the length of the *longest increasing subsequence* of the given sequence.
 - Example: The longest increasing subsequence of the sequence (7,2,8,10,3,6,9,7) is (2,3,6,7) and its length is 4.

End