# COL202: Discrete Mathematical Structures

# Ragesh Jaiswal, CSE, IIT Delhi

Ragesh Jaiswal, CSE, IIT Delhi COL202: Discrete Mathematical Structures

< 31

# Number Theory and Cryptography Group Theory

#### Definition (Group)

A group is a set G along with a binary operator  $\cdot$  for which the following conditions hold:

- $\textbf{O} \underline{Closure}: For all <math>g, h \in G, g \cdot h \in G.$
- **2** <u>Identity</u>: There exists an identity  $e \in G$  such that for all  $g \in G$ ,  $\overline{e \cdot g} = g \cdot e = g$ .
- **3** <u>Inverse</u>: For all  $g \in G$ , there exists an  $h \in G$  such that  $g \cdot h = e = h \cdot g$ . Such h is called an *inverse* of g.

#### Definition (Finite Group)

When a group G has finite number of elements, then we say that it is a finite group of order |G|.

#### Definition (Abelian Group)

G is called an *abelian* group if it is a group and also satisfies the following condition:

• Commutativity: For all  $g, h \in G, g \cdot h = h \cdot g$ .

- Exercise 1: Identity element in any group is unique.
- Exercise 2: Every element in any group has a unique inverse.
- Exercise 3: Let G be a group and  $a, b, c \in G$ . If  $a \cdot c = b \cdot c$ , then a = b. In particular, is  $a \cdot c = c$ , then a is the identity element.

#### Theorem

Let G be a finite abelian group with m = |G|. Then for any element  $g \in G, g^m = 1$ . (Here  $g^m$  denotes  $g \cdot g \cdot ... \cdot g$  (m operations).)

#### Theorem

Let G be a finite abelian group with m = |G|. Then for any element  $g \in G$ ,  $g^m = 1$ . (Here  $g^m$  denotes  $g \cdot g \cdot ... \cdot g$  (m operations).)

 Let m be prime and a be an integer such that 1 ≤ a < m. What is the value of a<sup>m-1</sup>?

#### Theorem

Let G be a finite abelian group with m = |G|. Then for any element  $g \in G$ ,  $g^m = 1$ . (Here  $g^m$  denotes  $g \cdot g \cdot ... \cdot g$  (m operations).)

### Theorem (Fermat's little theorem)

If p is a prime number, then for any integer a we have:  $a^p \equiv a \pmod{p}$ .

• Let p, q be primes, let N = pq, let  $\phi(N) = (p-1)(q-1)$ , and let e, d be such  $ed \equiv 1 \pmod{\phi(N)}$ . Then for any  $M \in Z_N^*$ , what is the value of  $M^{ed} \pmod{N}$ ?

・ 同 ト ・ ヨ ト ・ ヨ ト

# Number Theory and Cryptography Group Theory and Cryptography

#### Theorem

Let G be a finite abelian group with m = |G|. Then for any element  $g \in G, g^m = 1$ . (Here  $g^m$  denotes  $g \cdot g \cdot ... \cdot g$  (m operations).)

#### Theorem (Fermat's little theorem)

If p is a prime number, then for any integer a we have:  $a^p \equiv a \pmod{p}$ .

#### Theorem

Let p, q be primes, let N = pq, let  $\phi(N) = (p-1)(q-1)$ , and let e, dbe such  $ed \equiv 1 \pmod{\phi(N)}$ . Then for any  $M \in Z_N$ ,  $M^{ed} \pmod{N} = M$ 

- The above theorem proves the correctness of the RSA algorithm.
- Question 1: Can we break RSA if we can factor N?
- Question 2: Can we factor N if we can break RSA?

直 ト イヨ ト イヨト

# Number Theory and Cryptography Diffie-Hellman key exchange

- Suppose we talk about symmetric schemes. How do two parties exchange secret key?
- Diffie-Hellman Key Exchange.



Both parties share  $g^{xy}$  which is the secret key for the session.

• The assumption used here is that there are groups in which computing  $g^{xy}$  given just  $g^x$  and  $g^y$  is difficult.

- Authentication is an issue in the this key exchange protocol.
- Diffie-Hellman Key Exchange: Man-in-the-middle attack



## Induction and Recursion

Ragesh Jaiswal, CSE, IIT Delhi COL202: Discrete Mathematical Structures

▲御▶ ▲理▶ ▲理▶

Э

# Induction and Recursion Mathematical Induction

- Mathematical induction is used to prove statements that assert that P(n) is true for all positive integers n, where P(n) is a propositional function.
- A proof by mathematical induction has two parts:
  - **Basis step**: Here we show that P(1) is true.
  - Inductive step: Here we show that if P(k) is true, then P(k+1) is true.

## Definition (Principle of mathematical induction)

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

- Basis step: We verify that P(1) is true.
- Inductive step: We show that the conditional statement  $\overline{P(k) \rightarrow P(k+1)}$  is true for all positive integers k.

・吊り ・ラト ・ラト

# Induction and Recursion Mathematical Induction

# Definition (Principle of mathematical induction)

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

- Basis step: We verify that P(1) is true.
- Inductive step: We show that the conditional statement  $\overline{P(k) \rightarrow P(k+1)}$  is true for all positive integers k.
- In the inductive step, we assume that for arbitrary positive integer P(k) is true and then show that P(k+1) must also be true. The assumption that P(k) is true is called the *inductive hypothesis*.
- Induction may be expressed as the following rule of inference:

$$(P(1) \land \forall k(P(k) \rightarrow P(k+1))) \rightarrow \forall n \ P(n)$$

## Definition (Principle of mathematical induction)

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

- Basis step: We verify that P(1) is true.
- Inductive step: We show that the conditional statement  $\overline{P(k) \rightarrow P(k+1)}$  is true for all positive integers k.
- Why is mathematical induction valid?
  - Well-ordering principle: Every nonempty subset of the set of positive integers has a least element.
  - Argue the validity of mathematical induction using the axiom above.

伺下 イヨト イヨト

# End

Ragesh Jaiswal, CSE, IIT Delhi COL202: Discrete Mathematical Structures

・ロト ・部 ト ・ヨト ・ヨト

3