COL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Ragesh Jaiswal, CSE, IIT Delhi COL202: Discrete Mathematical Structures

Number Theory and Cryptography

Theorem (Chinese Remaindering Theorem)

Let $m_1, m_2, ..., m_n$ be pairwise relatively prime positive integers greater than one and $a_1, a_2, ..., a_n$ arbitrary integers. Then the system

$$x \equiv a_1 \pmod{m_1},$$

$$x \equiv a_2 \pmod{m_2},$$

$$\vdots$$

$$x \equiv a_n \pmod{m_n}$$

has a unique solution modulo $m = m_1 m_2 \dots m_n$. (That is, there is a solution x with $0 \le x < m$, and all other solutions are congruent modulo m to this solution.)

Number Theory and Cryptography Primes and GCD

Theorem (Chinese Remaindering Theorem)

Let $m_1, m_2, ..., m_n$ be pairwise relatively prime positive integers greater than one and $a_1, a_2, ..., a_n$ arbitrary integers. Then the system

> $x \equiv a_1 \pmod{m_1},$ $x \equiv a_2 \pmod{m_2},$ \vdots $x \equiv a_n \pmod{m_n}$

has a unique solution modulo $m = m_1 m_2 \dots m_n$. (That is, there is a solution x with $0 \le x < m$, and all other solutions are congruent modulo m to this solution.)

• Proof of existence:

- Let M_k = m/m_k and let y_k denote the inverse of M_k modulo m_k (i.e., M_k ⋅ y_k ≡ 1 (mod m_k)).
- <u>Claim</u>: $x = \sum_{i} a_i \cdot M_i \cdot y_i$ is a solution modulo *m*.

Number Theory and Cryptography Primes and GCD

Theorem (Chinese Remaindering Theorem)

Let $m_1, m_2, ..., m_n$ be pairwise relatively prime positive integers greater than one and $a_1, a_2, ..., a_n$ arbitrary integers. Then the system

> $x \equiv a_1 \pmod{m_1},$ $x \equiv a_2 \pmod{m_2},$ \vdots $x \equiv a_n \pmod{m_n}$

has a unique solution modulo $m = m_1 m_2 \dots m_n$. (That is, there is a solution x with $0 \le x < m$, and all other solutions are congruent modulo m to this solution.)

- Proof of uniqueness:
 - Lemma: Let p, q be relatively prime positive integers. For any integers a, b, if a ≡ b (mod p) and a ≡ b (mod q), then a ≡ b (mod pq).

Number Theory and Cryptography Primes and GCD

Theorem (Chinese Remaindering Theorem)

Let $m_1, m_2, ..., m_n$ be pairwise relatively prime positive integers greater than one and $a_1, a_2, ..., a_n$ arbitrary integers. Then the system

$$\begin{array}{l} x \equiv a_1 \ (mod \ m_1), \\ x \equiv a_2 \ (mod \ m_2), \\ \vdots \\ x \equiv a_n \ (mod \ m_n) \end{array}$$

has a unique solution modulo $m = m_1 m_2 \dots m_n$. (That is, there is a solution x with $0 \le x < m$, and all other solutions are congruent modulo m to this solution.)

• Let $m_1, ..., m_n$ be relatively prime and let $m = m_1 ... m_n$. Consider the following two sets:

•
$$A = Z_m$$

• $B = \{(x_1, ..., x_n) | \forall i \ (x_i \in Z_{m_i}) \}$

• <u>Claim</u>: Consider $f : A \rightarrow B$ defined as

$$f(x) = (x \pmod{m_1}, x \pmod{m_2}, ..., x \pmod{m_n}).$$

Then f is a bijection.

医子宫医子宫区

Number Theory and Cryptography Primes and GCD

• Suppose we have to multiply the following two numbers:

x = 1682593 and y = 176234

• Let $m_1 = 11, m_2 = 13, m_3 = 17, m_4 = 19, m_5 = 23, m_6 = 29, m_7 = 31, m_8 = 37, m_9 = 41$. So, $m = m_1 \dots m_9 = 1448810778701$.

r	$x \pmod{r}$	y (mod r)	xy (mod r)
11	0	3	?
13	3	6	?
17	1	12	?
19	10	9	?
23	5	8	?
29	13	1	?
31	6	30	?
37	18	3	?
41	35	16	?

Number Theory and Cryptography Primes and GCD

• Suppose we have to multiply the following two numbers:

x = 1682593 and y = 176234

• Let $m_1 = 11, m_2 = 13, m_3 = 17, m_4 = 19, m_5 = 23, m_6 = 29, m_7 = 31, m_8 = 37, m_9 = 41$. So, $m = m_1 \dots m_9 = 1448810778701$.

r	$x \pmod{r}$	y (mod r)	xy (mod r)
11	0	3	0
13	3	6	5
17	1	12	12
19	10	9	14
23	5	8	17
29	13	1	13
31	6	30	25
37	18	3	17
41	35	16	27

• Can we construct xy using the table above?

Read the chapter on application of congruences.

Number Theory and Cryptography

Number Theory and Cryptography Cryptography

• One of the main tasks in Cryptography is *secure communication*.

- The above picture shows a *symmetric* scheme.
- How do you construct such a scheme?

Number Theory and Cryptography Cryptography

- The main issue with symmetric schemes is key distribution.
- The picture below shows an alternate mechanism known as *Public key encryption*.

Number Theory and Cryptography Cryptography

- How do we construct a public key encryption scheme?
- The description of a public key encryption scheme involves defining three procedures.
 - Gen: This generates the public-key, secret-key pair (pk, sk).
 - Encrypt_{pk}(M): This takes as input a message and then uses just the public key to generate a cipher text.
 - *Decrypt_{sk}(C)*: This takes as input a cipher text and uses the secret key to generate the message.
- The correctness property that should hold for the above procedures is:

$$Decrypt_{sk}(Encrypt_{pk}(M)) = M.$$

- Consider the following scheme:
 - Gen: Find large *n*-bit primes p, q (*n* is usually 1024). Let N = pq and $\phi(N) = (p-1)(q-1)$. Find integers e, d such that $ed \equiv 1 \pmod{\phi(N)}$. Output (pk, sk), where

pk = (N, e) and sk = (N, d)

- $Encrypt_{pk}(M)$: Output $M^e \pmod{N}$.
- $Decrypt_{sk}(C)$: Output $C^d \pmod{N}$.
- This is popularly called the RSA scheme. This is named after its inventors Ron **R**ivest, Adi **S**hamir, and Leonard **A**dleman.
- Does the correctness property hold for the above scheme?

ヨト イヨト イヨト

Number Theory and Cryptography Group Theory

Definition (Group)

A group is a set G along with a binary operator \cdot for which the following conditions hold:

- **2** <u>Identity</u>: There exists an identity $e \in G$ such that for all $g \in G$, $\overline{e \cdot g} = g \cdot e = g$.
- **3** <u>Inverse</u>: For all $g \in G$, there exists an $h \in G$ such that $g \cdot h = e = h \cdot g$. Such h is called an *inverse* of g.

Definition (Finite Group)

When a group G has finite number of elements, then we say that it is a finite group of order |G|.

Definition (Abelian Group)

G is called an *abelian* group if it is a group and also satisfies the following condition:

• Commutativity: For all $g, h \in G, g \cdot h = h \cdot g$.

- Exercise 1: Identity element in any group is unique.
- Exercise 2: Every element in any group has a unique inverse.
- Exercise 3: Let G be a group and $a, b, c \in G$. If $a \cdot c = b \cdot c$, then a = b. In particular, is $a \cdot c = c$, then a is the identity element.

Theorem

Let G be a finite abelian group with m = |G|. Then for any element $g \in G, g^m = 1$. (Here g^m denotes $g \cdot g \cdot ... \cdot g$ (m operations).)

Theorem

Let G be a finite abelian group with m = |G|. Then for any element $g \in G$, $g^m = 1$. (Here g^m denotes $g \cdot g \cdot ... \cdot g$ (m operations).)

Let m be prime and a be an integer such that 1 ≤ a < m.
 What is the value of a^{m-1}?

Theorem

Let G be a finite abelian group with m = |G|. Then for any element $g \in G$, $g^m = 1$. (Here g^m denotes $g \cdot g \cdot ... \cdot g$ (m operations).)

Theorem (Fermat's little theorem)

If p is a prime number, then for any integer a we have: $a^p \equiv a \pmod{p}$.

• Let p, q be primes, let N = pq, let $\phi(N) = (p-1)(q-1)$, and let e, d be such $ed \equiv 1 \pmod{\phi(N)}$. Then for any $M \in Z_N^*$, what is the value of $M^{ed} \pmod{N}$?

・ 同 ト ・ ヨ ト ・ ヨ ト

End

Ragesh Jaiswal, CSE, IIT Delhi COL202: Discrete Mathematical Structures

・ロト ・部 ト ・ヨト ・ヨト

3