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Number Theory and Cryptography
Primes and GCD

Theorem (Chinese Remaindering Theorem)

Let m1,m2, ...,mn be pairwise relatively prime positive integers
greater than one and a1, a2, ..., an arbitrary integers. Then the
system

x ≡ a1 (mod m1),

x ≡ a2 (mod m2),
...

x ≡ an (mod mn)

has a unique solution modulo m = m1m2...mn. (That is, there is a
solution x with 0 ≤ x < m, and all other solutions are congruent
modulo m to this solution.)
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Theorem (Chinese Remaindering Theorem)

Let m1,m2, ...,mn be pairwise relatively prime positive integers greater
than one and a1, a2, ..., an arbitrary integers. Then the system

x ≡ a1 (mod m1),

x ≡ a2 (mod m2),
...

x ≡ an (mod mn)

has a unique solution modulo m = m1m2...mn. (That is, there is a
solution x with 0 ≤ x < m, and all other solutions are congruent modulo
m to this solution.)

Proof of existence:

Let Mk = m/mk and let yk denote the inverse of Mk modulo mk

(i.e., Mk · yk ≡ 1 (mod mk)).
Claim: x =

∑
i ai ·Mi · yi is a solution modulo m.
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Number Theory and Cryptography
Primes and GCD

Theorem (Chinese Remaindering Theorem)

Let m1,m2, ...,mn be pairwise relatively prime positive integers greater
than one and a1, a2, ..., an arbitrary integers. Then the system

x ≡ a1 (mod m1),

x ≡ a2 (mod m2),
...

x ≡ an (mod mn)

has a unique solution modulo m = m1m2...mn. (That is, there is a
solution x with 0 ≤ x < m, and all other solutions are congruent modulo
m to this solution.)

Proof of uniqueness:

Lemma: Let p, q be relatively prime positive integers. For any
integers a, b, if a ≡ b (mod p) and a ≡ b (mod q), then
a ≡ b (mod pq).
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Primes and GCD

Theorem (Chinese Remaindering Theorem)

Let m1,m2, ...,mn be pairwise relatively prime positive integers greater
than one and a1, a2, ..., an arbitrary integers. Then the system

x ≡ a1 (mod m1),

x ≡ a2 (mod m2),
...

x ≡ an (mod mn)

has a unique solution modulo m = m1m2...mn. (That is, there is a
solution x with 0 ≤ x < m, and all other solutions are congruent modulo
m to this solution.)

Let m1, ...,mn be relatively prime and let m = m1...mn. Consider
the following two sets:

A = Zm

B = {(x1, ..., xn)|∀i (xi ∈ Zmi )}.
Claim: Consider f : A→ B defined as

f (x) = (x (mod m1), x (mod m2), ..., x (mod mn)).

Then f is a bijection.
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Suppose we have to multiply the following two numbers:

x = 1682593 and y = 176234

Let m1 = 11,m2 = 13,m3 = 17,m4 = 19,m5 = 23,m6 = 29,m7 =
31,m8 = 37,m9 = 41. So, m = m1...m9 = 1448810778701.

r x (mod r) y (mod r) xy (mod r)

11 0 3 ?

13 3 6 ?

17 1 12 ?

19 10 9 ?

23 5 8 ?

29 13 1 ?

31 6 30 ?

37 18 3 ?

41 35 16 ?
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Suppose we have to multiply the following two numbers:

x = 1682593 and y = 176234

Let m1 = 11,m2 = 13,m3 = 17,m4 = 19,m5 = 23,m6 = 29,m7 =
31,m8 = 37,m9 = 41. So, m = m1...m9 = 1448810778701.

r x (mod r) y (mod r) xy (mod r)

11 0 3 0

13 3 6 5

17 1 12 12

19 10 9 14

23 5 8 17

29 13 1 13

31 6 30 25

37 18 3 17

41 35 16 27

Can we construct xy using the table above?

Ragesh Jaiswal, CSE, IIT Delhi COL202: Discrete Mathematical Structures



Read the chapter on application of congruences.
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Number Theory and Cryptography
Cryptography

One of the main tasks in Cryptography is secure
communication.

The above picture shows a symmetric scheme.

How do you construct such a scheme?
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Number Theory and Cryptography
Cryptography

The main issue with symmetric schemes is key distribution.
The picture below shows an alternate mechanism known as
Public key encryption.
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How do we construct a public key encryption scheme?

The description of a public key encryption scheme involves
defining three procedures.

Gen: This generates the public-key, secret-key pair (pk, sk).
Encryptpk(M): This takes as input a message and then uses
just the public key to generate a cipher text.
Decryptsk(C ): This takes as input a cipher text and uses the
secret key to generate the message.

The correctness property that should hold for the above
procedures is:

Decryptsk(Encryptpk(M)) = M.
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Cryptography

Consider the following scheme:

Gen: Find large n-bit primes p, q (n is usually 1024). Let
N = pq and φ(N) = (p − 1)(q − 1). Find integers e, d such
that ed ≡ 1 (mod φ(N)). Output (pk, sk), where

pk = (N, e) and sk = (N, d)

Encryptpk(M): Output Me (mod N).
Decryptsk(C ): Output C d (mod N).

This is popularly called the RSA scheme. This is named after
its inventors Ron Rivest, Adi Shamir, and Leonard Adleman.

Does the correctness property hold for the above scheme?
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Group Theory

Definition (Group)

A group is a set G along with a binary operator · for which the following
conditions hold:

1 Closure: For all g , h ∈ G , g · h ∈ G .
2 Identity: There exists an identity e ∈ G such that for all g ∈ G ,

e · g = g · e = g .
3 Inverse: For all g ∈ G , there exists an h ∈ G such that

g · h = e = h · g . Such h is called an inverse of g .
4 Associativity: For all g1, g2, g3 ∈ G , (g1 · g2) · g3 = g1 · (g2 · g3).

Definition (Finite Group)

When a group G has finite number of elements, then we say that it is a
finite group of order |G |.

Definition (Abelian Group)

G is called an abelian group if it is a group and also satisfies the following
condition:

Commutativity: For all g , h ∈ G , g · h = h · g .
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Exercise 1: Identity element in any group is unique.

Exercise 2: Every element in any group has a unique inverse.

Exercise 3: Let G be a group and a, b, c ∈ G .If a · c = b · c,
then a = b. In particular, is a · c = c , then a is the identity
element.
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Theorem

Let G be a finite abelian group with m = |G |. Then for any
element g ∈ G , gm = 1. (Here gm denotes g · g · ... · g (m
operations).)
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Group Theory

Theorem

Let G be a finite abelian group with m = |G |. Then for any
element g ∈ G , gm = 1. (Here gm denotes g · g · ... · g (m
operations).)

Let m be prime and a be an integer such that 1 ≤ a < m.
What is the value of am−1?
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Theorem

Let G be a finite abelian group with m = |G |. Then for any
element g ∈ G , gm = 1. (Here gm denotes g · g · ... · g (m
operations).)

Theorem (Fermat’s little theorem)

If p is a prime number, then for any integer a we have:
ap ≡ a (mod p).

Let p, q be primes, let N = pq, let φ(N) = (p − 1)(q − 1),
and let e, d be such ed ≡ 1 (mod φ(N)). Then for any
M ∈ Z ∗

N , what is the value of Med (mod N)?
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