COL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Number Theory and Cryptography

Number Theory and Cryptography

Binary Multiplication

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, $\overline{\text { Design an algorithm to output }} A \cdot B$.

Algorithm

Karatsuba (A, B)

- If $(|A|=|B|=1)$ return $(A \cdot B)$
- Split A into A_{L} and A_{R}
- Split B into B_{L} and B_{R}
- $P \leftarrow \operatorname{Karatsuba}\left(A_{L}, B_{L}\right)$
- $Q \leftarrow \operatorname{Karatsuba}\left(A_{R}, B_{R}\right)$
- $R \leftarrow \operatorname{Karatsuba}\left(A_{L}+A_{R}, B_{L}+B_{R}\right)$
- return(Combine $(P, Q, R))$
- Recurrence relation: $T(n) \leq 3 \cdot T(n / 2)+c n ; T(1) \leq c$.
- What is the solution of this recurrence relation?

$$
T(n) \leq O\left(n^{\log _{2} 3}\right)
$$

Number Theory and Cryptography
 Primes and GCD

Theorem

Let a, b be positive integers. Then there exists integers x, y such that $x a+y b=\operatorname{gcd}(a, b)$. Furthermore, $\operatorname{gcd}(a, b)$ is the smallest positive integer that can be expressed in this way.

Number Theory and Cryptography

Primes and GCD

Theorem

Let a, b be positive integers. Then there exists integers x, y such that $x a+y b=\operatorname{gcd}(a, b)$. Furthermore, $\operatorname{gcd}(a, b)$ is the smallest positive integer that can be expressed in this way.

Theorem

If a, b, and c are positive integers such that $\operatorname{gcd}(a, b)=1$ and $a \mid b c$, then $a \mid c$.

Theorem

If p is a prime and $p \mid a_{1} a_{2} \ldots a_{n}$, where each a_{i} is an integer, then $p \mid a_{i}$ for some i.

Number Theory and Cryptography
 Primes and GCD

- For any positive integer m, let Z_{m} denote the set $\{0,1, \ldots, m-1\}$.
- Consider the set $Z_{m}^{*}=\left\{x \in Z_{m} \mid \operatorname{gcd}(x, m)=1\right\}$ and the operator ${ }_{m}$ which is basically the operation multiplication modulo m.
- Show that $\cdot{ }_{m}$ satisfies the following properties:
- Closure
- Associativity
- Commutativity
- Identity
- Inverse
- How do you compute the inverse of $x \in Z_{m}^{*}$ modulo m ?

Number Theory and Cryptography
 Primes and GCD

- Problem: Given integers $a \geq b>0$, design an algorithm for computing integers x, y such that $x a+y b=\operatorname{gcd}(a, b)$.

Extended-Euclid-GCD (a, b) $\operatorname{If}(b=0)$, then return $(a, 1,0)$ else

Compute integers q, r such that $a=q b+r$ and $0 \leq r<b$.
Let $(d, x, y)=$ Extended-Euclid-GCD (b, r)
return $(d, y, x-y q)$

Number Theory and Cryptography
 Primes and GCD

- Problem: Given integers $a \geq b>0$, design an algorithm for computing integers x, y such that $x a+y b=\operatorname{gcd}(a, b)$.

Extended-Euclid-GCD (a, b) $\operatorname{If}(b=0)$, then return $(a, 1,0)$ else

Compute integers q, r such that $a=q b+r$ and $0 \leq r<b$.
Let $(d, x, y)=$ Extended-Euclid-GCD (b, r)
return $(d, y, x-y q)$

- How do you compute the inverse of $x \in Z_{m}^{*}$ modulo m ?

Number Theory and Cryptography

Primes and GCD

- Problem: Given integers $a \geq b>0$, design an algorithm for computing integers x, y such that $x a+y b=\operatorname{gcd}(a, b)$.

Extended-Euclid-GCD (a, b)

$\operatorname{If}(b=0)$, then return $(a, 1,0)$
else
Compute integers q, r such that $a=q b+r$ and $0 \leq r<b$.
Let $(d, x, y)=$ Extended-Euclid-GCD (b, r)
return $(d, y, x-y q)$

- How do you compute the inverse of $x \in Z_{m}^{*}$ modulo m ?
- Find the inverse of 25 modulo 53 .
- What are the solutions of linear congruence $3 x \equiv 4(\bmod 7)$?

Number Theory and Cryptography
 Primes and GCD

- Worst-case time complexity of simple operations. In each of the cases the input size is denoted by $n=|a|+|b|$.

Operation	Time complexity
$a \pm b$	$?$
$a \cdot b$	$?$
$a(\operatorname{div} b)$	$?$
$a(\bmod b)$	$?$
$a^{-1}(\bmod b)$ for relatively prime a, b	$?$

Number Theory and Cryptography
 Primes and GCD

- Worst-case time complexity of simple operations. In each of the cases the input size is denoted by $n=|a|+|b|$.

Operation	Time complexity
$a \pm b$	$O(n)$
$a \cdot b$	$O\left(n^{2}\right)$
$a(\operatorname{div} b)$	$O\left(n^{2}\right)$
$a(\bmod b)$	$O\left(n^{2}\right)$
$a^{-1}(\bmod b)$ for relatively prime a, b	$O\left(n^{3}\right)$

Number Theory and Cryptography

Primes and GCD

Theorem (Chinese Remaindering Theorem)

Let $m_{1}, m_{2}, \ldots, m_{n}$ be pairwise relatively prime positive integers greater than one and $a_{1}, a_{2}, \ldots, a_{n}$ arbitrary integers. Then the system

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod m_{1}\right), \\
& x \equiv a_{2}\left(\bmod m_{2}\right), \\
& \vdots \\
& x \equiv a_{n}\left(\bmod m_{n}\right)
\end{aligned}
$$

has a unique solution modulo $m=m_{1} m_{2} \ldots m_{n}$. (That is, there is a solution x with $0 \leq x<m$, and all other solutions are congruent modulo m to this solution.)

End

