COL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Number Theory and Cryptography

Number Theory and Cryptography

Divisibility and Modular Arithmetic

Theorem

Let b be an integer greater than 1. Then if n is a positive integer, it can be expressed uniquely in the form

$$
n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{1} b+a_{0}
$$

where k is a nonnegative integer, $a_{0}, a_{1}, \ldots, a_{k}$ are nonnegative integers less than b, and $a_{k} \neq 0$.

- What is the running time of each of the following operations:
- Adding an m bit number with an n bit number.
- Multiplying an m bit number with an n bit number.

Number Theory and Cryptography

Binary Multiplication

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

Number Theory and Cryptography

Binary Multiplication

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

- Solution 1: Use long multiplication.
- What is the running time of the algorithm that uses long multiplication?

Number Theory and Cryptography

Binary Multiplication

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

- Solution 1: Use long multiplication.
- What is the running time of the algorithm that uses long multiplication? $O\left(n^{2}\right)$
- Is there a faster algorithm?

Number Theory and Cryptography

Binary Multiplication

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

- Solution 1: Algorithm using long multiplication with running time $O\left(n^{2}\right)$.
- Solution 2: (Assume n is a power of 2)
- Write $A=A_{L} \cdot 2^{n / 2}+A_{R}$ and $B=B_{L} \cdot 2^{n / 2}+B_{R}$.
- So, $A \cdot B=\left(A_{L} \cdot B_{L}\right) \cdot 2^{n}+\left(A_{L} \cdot B_{R}+A_{R} \cdot B_{L}\right) \cdot 2^{n / 2}+\left(A_{R} \cdot B_{R}\right)$
- Main Idea: Compute $\left(A_{L} \cdot B_{L}\right),\left(A_{R} \cdot B_{R}\right)$, and $\left(A_{R} \cdot B_{L}\right)$, and ($A_{L} \cdot B_{R}$) and combine these values.

Number Theory and Cryptography

Binary Multiplication

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, $\overline{\text { Design an algorithm to output }} A \cdot B$.

- Solution 1: Algorithm using long multiplication with running time $O\left(n^{2}\right)$.
- Solution 2: (Assume n is a power of 2)
- Write $A=A_{L} \cdot 2^{n / 2}+A_{R}$ and $B=B_{L} \cdot 2^{n / 2}+B_{R}$.
- So, $A \cdot B=\left(A_{L} \cdot B_{L}\right) \cdot 2^{n}+\left(A_{L} \cdot B_{R}+A_{R} \cdot B_{L}\right) \cdot 2^{n / 2}+\left(A_{R} \cdot B_{R}\right)$
- Main Idea: Compute $\left(A_{L} \cdot B_{L}\right),\left(A_{R} \cdot B_{R}\right)$, and $\left(A_{R} \cdot B_{L}\right)$, and $\left(A_{L} \cdot B_{R}\right)$ and combine these values.

Algorithm

DivideAndConquer (A, B)

- If $(|A|=|B|=1)$ return $(A \cdot B)$
- Split A into A_{L} and A_{R}
- Split B into B_{L} and B_{R}
- $P \leftarrow$ DivideAndConquer $\left(A_{L}, B_{L}\right)$
- $Q \leftarrow$ DivideAndConquer $\left(A_{R}, B_{R}\right)$
- $R \leftarrow$ DivideAndConquer $\left(A_{L}, B_{R}\right)$
$-S \leftarrow$ DivideAndConquer $\left(A_{R}, B_{L}\right)$
- return(Combine (P, Q, R, S))
- What is the recurrence relation for the running time of the above algorithm?

Number Theory and Cryptography

Binary Multiplication

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

Algorithm

DivideAndConquer (A, B)

- If $(|A|=|B|=1)$ return $(A \cdot B)$
- Split A into A_{L} and A_{R}
- Split B into B_{L} and B_{R}
- $P \leftarrow$ DivideAndConquer $\left(A_{L}, B_{L}\right)$
- $Q \leftarrow$ DivideAndConquer $\left(A_{R}, B_{R}\right)$
- $R \leftarrow$ DivideAndConquer $\left(A_{L}, B_{R}\right)$
- $S \leftarrow$ DivideAndConquer $\left(A_{R}, B_{L}\right)$
- return(Combine (P, Q, R, S))
- What is the recurrence relation for the running time of the above algorithm? $T(n)=4 \cdot T(n / 2)+O(n)$ for $n>1$ and $T(1)=O(1)$.
- What is the solution to the above recurrence relation?

Number Theory and Cryptography

Binary Multiplication

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

Algorithm

DivideAndConquer (A, B)

- If $(|A|=|B|=1)$ return $(A \cdot B)$
- Split A into A_{L} and A_{R}
- Split B into B_{L} and B_{R}
- $P \leftarrow$ DivideAndConquer $\left(A_{L}, B_{L}\right)$
- $Q \leftarrow$ DivideAndConquer $\left(A_{R}, B_{R}\right)$
- $R \leftarrow$ DivideAndConquer $\left(A_{L}, B_{R}\right)$
$-S \leftarrow$ DivideAndConquer $\left(A_{R}, B_{L}\right)$
- return(Combine (P, Q, R, S))
- What is the recurrence relation for the running time of the above algorithm? $T(n)=4 \cdot T(n / 2)+O(n)$ for $n>1$ and $T(1)=O(1)$.
- What is the solution to the above recurrence relation?

$$
T(n)=O\left(n^{2}\right)
$$

Number Theory and Cryptography

Binary Multiplication

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

- Solution 1: Algorithm using long multiplication with running time $O\left(n^{2}\right)$.
- Solution 2: Naïve Divide and Conquer with running time $O\left(n^{2}\right)$.
- Solution 3:
- Write $A=A_{L} \cdot 2^{n / 2}+A_{R}$ and $B=B_{L} \cdot 2^{n / 2}+B_{R}$.
- So, $A \cdot B=\left(A_{L} \cdot B_{L}\right) \cdot 2^{n}+\left(A_{L} \cdot B_{R}+A_{R} \cdot B_{L}\right) \cdot 2^{n / 2}+\left(A_{R} \cdot B_{R}\right)$
- Main Idea: Compute $\left(A_{L} \cdot B_{L}\right),\left(A_{R} \cdot B_{R}\right)$, and

$$
\overline{\left(A_{L}+B_{L}\right)} \cdot\left(A_{R}+B_{R}\right)-\left(A_{L} \cdot B_{L}\right)-\left(A_{R} \cdot B_{R}\right) .
$$

Number Theory and Cryptography

Binary Multiplication

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

Algorithm

Karatsuba (A, B)

- If $(|A|=|B|=1)$ return $(A \cdot B)$
- Split A into A_{L} and A_{R}
- Split B into B_{L} and B_{R}
- $P \leftarrow \operatorname{Karatsuba}\left(A_{L}, B_{L}\right)$
- $Q \leftarrow \operatorname{Karatsuba}\left(A_{R}, B_{R}\right)$
$-R \leftarrow \operatorname{Karatsuba}\left(A_{L}+A_{R}, B_{L}+B_{R}\right)$
- return(Combine (P, Q, R))
- What is the recurrence relation for the running time of the above algorithm?

Number Theory and Cryptography

Binary Multiplication

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

Algorithm

Karatsuba (A, B)

- If $(|A|=|B|=1)$ return $(A \cdot B)$
- Split A into A_{L} and A_{R}
- Split B into B_{L} and B_{R}
- $P \leftarrow \operatorname{Karatsuba}\left(A_{L}, B_{L}\right)$
- $Q \leftarrow$ Karatsuba $\left(A_{R}, B_{R}\right)$
$-R \leftarrow \operatorname{Karatsuba}\left(A_{L}+A_{R}, B_{L}+B_{R}\right)$
- return(Combine (P, Q, R))
- Recurrence relation: $T(n) \leq 3 \cdot T(n / 2)+c n ; T(1) \leq c$.
- What is the solution of this recurrence relation?

Number Theory and Cryptography

Binary Multiplication

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and B, $\overline{\text { Design an algorithm to output }} A \cdot B$.

Algorithm

Karatsuba (A, B)

- If $(|A|=|B|=1)$ return $(A \cdot B)$
- Split A into A_{L} and A_{R}
- Split B into B_{L} and B_{R}
- $P \leftarrow \operatorname{Karatsuba}\left(A_{L}, B_{L}\right)$
- $Q \leftarrow \operatorname{Karatsuba}\left(A_{R}, B_{R}\right)$
- $R \leftarrow \operatorname{Karatsuba}\left(A_{L}+A_{R}, B_{L}+B_{R}\right)$
- return(Combine $(P, Q, R))$
- Recurrence relation: $T(n) \leq 3 \cdot T(n / 2)+c n ; T(1) \leq c$.
- What is the solution of this recurrence relation?

$$
T(n) \leq O\left(n^{\log _{2} 3}\right)
$$

Number Theory and Cryptography

Divisibility and Modular Arithmetic

Theorem

Let b be an integer greater than 1. Then if n is a positive integer, it can be expressed uniquely in the form

$$
n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{1} b+a_{0}
$$

where k is a nonnegative integer, $a_{0}, a_{1}, \ldots, a_{k}$ are nonnegative integers less than b, and $a_{k} \neq 0$.

- What is the running time of each of the following operations:
- Adding an m bit number with an n bit number.
- Multiplying an m bit number with an n bit number.
- Dividing an m bit number by an n bit number.
- Computing an m bit number modulo an n bit number.

Number Theory and Cryptography

Primes and GCD

Definition

An integer p greater than 1 is called prime if the only positive factors of p are 1 and p. A positive integer that is greater than 1 and is not prime is called composite.

Theorem (Fundamental theorem of arithmetic)

Every integer greater than 1 can be written uniquely as a prime or as the product of two or more primes where the prime factors are written in order of nondecreasing size.

Theorem

If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n}.

- How can we find all prime numbers ≤ 100 ?
- Show that any composite number ≤ 100 are divisible by $2,3,5,7$.
- Sieve of Eratosthenes uses this idea to eliminate all composites and list all primes.

Number Theory and Cryptography
 Primes and GCD

Theorem
 There are infinitely many primes.

Number Theory and Cryptography
 Primes and GCD

Definition

Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b. The greatest common divisor of a and b is denoted by $\operatorname{gcd}(a, b)$.

Definition

The integers a and b are relatively prime if their greatest common divisor is 1 .

Definition

The integers $a_{1}, a_{2}, \ldots, a_{n}$ are pairwise relatively prime if $\operatorname{gcd}\left(a_{i}, a_{j}\right)=1$ whenever $1 \leq i<j \leq n$.

Definition

The least common multiple of the positive integers a and b is the smallest positive integer that is divisible by both a and b. The least common multiple of a and b is denoted by $\operatorname{Icm}(a, b)$.

Number Theory and Cryptography

Primes and GCD

Theorem

Let a and b be positive integers. Then $a b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)$.

Theorem

```
Let a=bq+r, where a, b, q, and r are integers. Then
gcd}(a,b)=\operatorname{gcd}(b,r)
```

- Using the above theorem, design an algorithm to compute gcd of two n bit numbers. What is the worst-case running time of your algorithm?

Number Theory and Cryptography
 Primes and GCD

Theorem

Let $a=b q+r$, where a, b, q, and r are integers. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

- Using the above theorem, design an algorithm to compute gcd of two n bit numbers. What is the worst-case running time of your algorithm?

```
Euclid-GCD \((a, b)\)
    If ( \(b=0\) ) then return \((a)\)
    else return(Euclid-GCD \((b, a(\bmod b)))\)
```


Number Theory and Cryptography
 Primes and GCD

```
Euclid-GCD \((a, b)\)
    If ( \(b=0\) ) then return \((a)\)
    else return(Euclid-GCD \((b, a(\bmod b)))\)
```

- How many recursive calls are made by the algorithm?
- What is the worst-case time complexity of the algorithm?

Number Theory and Cryptography
 Primes and GCD

Theorem

Let a, b be positive integers. Then there exists integers x, y such that $x a+y b=\operatorname{gcd}(a, b)$. Furthermore, $\operatorname{gcd}(a, b)$ is the smallest positive integer that can be expressed in this way.

End

