COL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Algorithms

Introduction

Big-O Notation

Definition (Big-O)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $O(g(n))$ (or $f(n)=O(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \leq c \cdot g(n)
$$

- Another short way of saying that $f(n)=O(g(n))$ is " $f(n)$ is order of $g(n)$ ".
- Show that: $8 n+5=O(n)$.

Introduction

Big-O Notation

Definition (Big-O)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $O(g(n))$ (or $f(n)=O(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \leq c \cdot g(n)
$$

- Another short way of saying that $f(n)=O(g(n))$ is " $f(n)$ is order of $g(n)$ ".
- Show that: $8 n+5=O(n)$.
- For constants $c=13$ and $n_{0}=1$, we show that

$$
\forall n \geq n_{0}, 8 n+5 \leq 13 \cdot n \text {. So, by definition of big-O, } 8 n+5=O(n) .
$$

Introduction

Big-O Notation

Definition (Big-O)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $O(g(n))$ (or $f(n)=O(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \leq c \cdot g(n)
$$

- Another short way of saying that $f(n)=O(g(n))$ is " $f(n)$ is order of $g(n)$ ".
- $g(n)$ may be interpreted as an upper bound on $f(n)$.
- Show that: $8 n+5=O(n)$.
- Is this true $8 n+5=O\left(n^{2}\right)$?

Introduction

Big-O Notation

Definition (Big-O)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $O(g(n))$ (or $f(n)=O(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \leq c \cdot g(n)
$$

- Another short way of saying that $f(n)=O(g(n))$ is " $f(n)$ is order of $g(n)$ ".
- $g(n)$ may be interpreted as an upper bound on $f(n)$.
- Show that: $8 n+5=O(n)$.
- Is this true $8 n+5=O\left(n^{2}\right)$? Yes
- $g(n)$ may be interpreted as an upper bound on $f(n)$.
- How do we capture lower bound?

Introduction

Big-O Notation

Definition (Big-Omega)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $\Omega(g(n))$ (or $f(n)=\Omega(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \geq c \cdot g(n)
$$

Introduction

Big-O Notation

Definition (Big-Omega)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $\Omega(g(n))$ (or $f(n)=\Omega(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \geq c \cdot g(n)
$$

- Show that: $f(n)=\Omega(g(n))$ iff $g(n)=O(f(n))$.

Introduction

Big-O Notation

Definition (Big-O)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $O(g(n))$ (or $f(n)=O(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \leq c \cdot g(n)
$$

Definition (Big-Omega)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $\Omega(g(n))$ (or $f(n)=\Omega(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \geq c \cdot g(n)
$$

- How do we say that $g(n)$ is both an upper bound and lower bound for a function $f(n)$? In other words, $g(n)$ is a tight bound on $f(n)$.

Introduction

Big-O Notation

Definition (Big-O)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $O(g(n))$ (or $f(n)=O(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \leq c \cdot g(n)
$$

Definition (Big-Omega)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $\Omega(g(n))$ (or $f(n)=\Omega(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \geq c \cdot g(n)
$$

Definition (Big-Theta)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $\Theta(g(n))$ (or $f(n)=\Theta(g(n)))$ iff $f(n)$ is $O(g(n))$ and $f(n)$ is $\Omega(g(n))$.

- Question: Show that $3 n \log n+4 n+5 \log n$ is $\Theta(n \log n)$.

Introduction

Big-O Notation

- Growth rates:
- Arrange the following functions in ascending order of growth rate:
- n
- $2^{\sqrt{\log n}}$
- $n^{\log n}$
- $2^{\log n}$
- $n / \log n$
- n^{n}

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- Solution: Do an asymptotic worst-case analysis recording the running time using $\operatorname{Big}-(\mathrm{O}, \Omega, \Theta)$ notation.

Introduction

- How do we describe an algorithm?
- Using a pseudocode.
- What are the desirable features of an algorithm?
(1) It should be correct.
- We use proof of correctness to argue correctness.
(2) It should run fast.
- We do an asymptotic worst-case analysis noting the running time in $\operatorname{Big}-(O, \Omega, \Theta)$ notation and use it to compare algorithms.

Example

FindPositiveSum (A, n)	
\quad - sum $\leftarrow 0$	$O(1)$
- For $i=1$ to n	$O(n)$
$\quad-$ if $(A[i]>0)$ sum \leftarrow sum $+A[i]$	$O(n)$
- return $($ sum $)$	$O(1)$
	Total: $O(n)$

Algorithms

- Algorithms: Does there exist a problem that cannot be solved by any algorithm?

End

