COL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Ragesh Jaiswal, CSE, IIT Delhi COL202: Discrete Mathematical Structures

Algorithms

Ragesh Jaiswal, CSE, IIT Delhi COL202: Discrete Mathematical Structures

▲□ ▶ ▲ □ ▶ ▲ □ ▶

3

Let f(n) and g(n) be functions mapping positive integers to positive real numbers. We say that f(n) is O(g(n)) (or f(n) = O(g(n)) in short) **iff** there is a real constant c > 0 and an integer constant $n_0 \ge 1$ such that:

$$\forall n \geq n_0, f(n) \leq c \cdot g(n)$$

- Another short way of saying that f(n) = O(g(n)) is "f(n) is order of g(n)".
- Show that: 8n + 5 = O(n).

ヨト イヨト イヨト

Let f(n) and g(n) be functions mapping positive integers to positive real numbers. We say that f(n) is O(g(n)) (or f(n) = O(g(n)) in short) **iff** there is a real constant c > 0 and an integer constant $n_0 \ge 1$ such that:

$$\forall n \geq n_0, f(n) \leq c \cdot g(n)$$

- Another short way of saying that f(n) = O(g(n)) is "f(n) is order of g(n)".
- Show that: 8n + 5 = O(n).
 - For constants c = 13 and $n_0 = 1$, we show that $\forall n \ge n_0, 8n + 5 \le 13 \cdot n$. So, by definition of big-O, 8n + 5 = O(n).

伺下 イヨト イヨト

Let f(n) and g(n) be functions mapping positive integers to positive real numbers. We say that f(n) is O(g(n)) (or f(n) = O(g(n)) in short) **iff** there is a real constant c > 0 and an integer constant $n_0 \ge 1$ such that:

$$\forall n \geq n_0, f(n) \leq c \cdot g(n)$$

- Another short way of saying that f(n) = O(g(n)) is "f(n) is order of g(n)".
- g(n) may be interpreted as an upper bound on f(n).
- Show that: 8n + 5 = O(n).
- Is this true $8n + 5 = O(n^2)$?

Let f(n) and g(n) be functions mapping positive integers to positive real numbers. We say that f(n) is O(g(n)) (or f(n) = O(g(n)) in short) **iff** there is a real constant c > 0 and an integer constant $n_0 \ge 1$ such that:

$$\forall n \geq n_0, f(n) \leq c \cdot g(n)$$

- Another short way of saying that f(n) = O(g(n)) is "f(n) is order of g(n)".
- g(n) may be interpreted as an upper bound on f(n).
- Show that: 8n + 5 = O(n).
- Is this true $8n + 5 = O(n^2)$? Yes
- g(n) may be interpreted as an *upper bound* on f(n).
- How do we capture *lower bound*?

伺下 イヨト イヨト

Definition (Big-Omega)

Let f(n) and g(n) be functions mapping positive integers to positive real numbers. We say that f(n) is $\Omega(g(n))$ (or $f(n) = \Omega(g(n))$ in short) **iff** there is a real constant c > 0 and an integer constant $n_0 \ge 1$ such that:

 $\forall n \geq n_0, f(n) \geq c \cdot g(n)$

ヨト イヨト イヨト

Definition (Big-Omega)

Let f(n) and g(n) be functions mapping positive integers to positive real numbers. We say that f(n) is $\Omega(g(n))$ (or $f(n) = \Omega(g(n))$ in short) **iff** there is a real constant c > 0 and an integer constant $n_0 \ge 1$ such that:

$$\forall n \geq n_0, f(n) \geq c \cdot g(n)$$

• Show that: $f(n) = \Omega(g(n))$ iff g(n) = O(f(n)).

ヨト イヨト イヨト

Let f(n) and g(n) be functions mapping positive integers to positive real numbers. We say that f(n) is O(g(n)) (or f(n) = O(g(n)) in short) **iff** there is a real constant c > 0 and an integer constant $n_0 \ge 1$ such that:

 $\forall n \geq n_0, f(n) \leq c \cdot g(n)$

Definition (Big-Omega)

Let f(n) and g(n) be functions mapping positive integers to positive real numbers. We say that f(n) is $\Omega(g(n))$ (or $f(n) = \Omega(g(n))$ in short) **iff** there is a real constant c > 0 and an integer constant $n_0 \ge 1$ such that:

$$\forall n \geq n_0, f(n) \geq c \cdot g(n)$$

How do we say that g(n) is both an upper bound and lower bound for a function f(n)? In other words, g(n) is a tight bound on f(n).

Introduction Big-O Notation

Definition (Big-O)

Let f(n) and g(n) be functions mapping positive integers to positive real numbers. We say that f(n) is O(g(n)) (or f(n) = O(g(n)) in short) **iff** there is a real constant c > 0 and an integer constant $n_0 \ge 1$ such that:

 $\forall n \geq n_0, f(n) \leq c \cdot g(n)$

Definition (Big-Omega)

Let f(n) and g(n) be functions mapping positive integers to positive real numbers. We say that f(n) is $\Omega(g(n))$ (or $f(n) = \Omega(g(n))$ in short) **iff** there is a real constant c > 0 and an integer constant $n_0 \ge 1$ such that:

 $\forall n \geq n_0, f(n) \geq c \cdot g(n)$

Definition (Big-Theta)

Let f(n) and g(n) be functions mapping positive integers to positive real numbers. We say that f(n) is $\Theta(g(n))$ (or $f(n) = \Theta(g(n))$) iff f(n) is O(g(n)) and f(n) is $\Omega(g(n))$.

• Question: Show that $3n \log n + 4n + 5 \log n$ is $\Theta(n \log n)$.

Growth rates:

• Arrange the following functions in ascending order of growth rate:

• • = • • = •

э

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- <u>Solution</u>: Do an asymptotic worst-case analysis recording the running time using Big-(0, Ω, Θ) notation.

Introduction

- How do we describe an algorithm?
 - Using a pseudocode.
- What are the desirable features of an algorithm?
 - It should be correct.
 - We use proof of correctness to argue correctness.
 - It should run fast.
 - We do an asymptotic worst-case analysis noting the running time in Big-(O, Ω, Θ) notation and use it to compare algorithms.

Example

FindPositiveSum (A, n)	
- $sum \leftarrow 0$	O(1)
- For $i = 1$ to n	<i>O</i> (<i>n</i>)
- if $(A[i] > 0)$ sum \leftarrow sum + $A[i]$	<i>O</i> (<i>n</i>)
- return(<i>sum</i>)	O(1)
	Total: $O(n)$

• Algorithms: Does there exist a problem that cannot be solved by any algorithm?

ゆ ト く ヨ ト く ヨ ト

End

Ragesh Jaiswal, CSE, IIT Delhi COL202: Discrete Mathematical Structures

・ロト ・部 ト ・ヨト ・ヨト

3