COL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Algorithms

• Algorithm (informal): A step-by-step procedure for performing some task.

Algorithms

 Algorithm (informal): A step-by-step procedure for performing some task.

Definition (Algorithm)

An algorithm is a finite sequence of precise instructions for performing a computation or for solving a problem.

 Question: Are there problems that cannot be solved by any algorithm?

- How do we describe an algorithm?
 - Algorithms are platform independent and so should be their description.
 - This allows us to focus on the main ideas rather than spend time parsing the programming language specific syntax and the implementation details.

- How do we describe an algorithm?
 - Algorithms are platform independent and so should be their description.
 - This allows us to focus on the main ideas rather than spend time parsing the programming language specific syntax and the implementation details.
 - A concise way of describing algorithm is pseudocode.
 - Pseudocode is not an actual code.
 - It consists of: high-level programming constructs (if-then, for etc.) + natural language.

- How do we describe an algorithm?
 - Algorithms are platform independent and so should be their description.
 - This allows us to focus on the main ideas rather than spend time parsing the programming language specific syntax and the implementation details.
 - A concise way of describing algorithm is pseudocode.
 - Pseudocode is not an actual code.
 - It consists of: high-level programming constructs (if-then, for etc.) + natural language.

Algorithm

```
FindMin(A, n)
```

-
$$min \leftarrow A[1]$$

- **for**
$$i = 2$$
 to n

- **if**
$$(A[i] < min)$$

-
$$min$$
 ← $A[i]$

- return(min)

- How do we describe an algorithm?
 - Algorithms are platform independent and so should be their description.
 - This allows us to focus on the main ideas rather than spend time parsing the programming language specific syntax and the implementation details.
 - A concise way of describing algorithm is pseudocode.
 - Pseudocode is not an actual code.
 - It consists of: high-level programming constructs (if-then, for etc.) + natural language.

Algorithm

FindMin(A, n)

- $min \leftarrow A[1]$
- for i = 2 to n
 - $\mathbf{if} \ A[i]$ is smaller than \min
 - $min \leftarrow A[i]$
- return(min)

- How do we describe an algorithm?
 - Using a pseudocode.
- What are the desirable features of an algorithm?

- How do we describe an algorithm?
 - Using a pseudocode.
- What are the desirable features of an algorithm?
 - It should be correct.
 - It should run fast.
 - It should take small amount of space (RAM).
 - It should consume small amount of power.
 - :

- How do we describe an algorithm?
 - Using a pseudocode.
- What are the desirable features of an algorithm?
 - ① It should be correct.
 - 2 It should run fast.
- How do we argue that an algorithm is correct?

- How do we argue that an algorithm is correct?
 - Proof of correctness: An argument that the algorithm works correctly for all inputs.
 - <u>Proof</u>: A valid argument that establishes the truth of a mathematical statement
- Consider the following algorithm that is supposed to output the sum of elements of an integer array of size *n*.

Algorithm

```
FindSum(A, n)
```

- $sum \leftarrow 0$
- for i = 1 to n
 - sum ← sum + A[i]
- return(sum)

- How do we argue that an algorithm is correct?
 - Proof of correctness: An argument that the algorithm works correctly for all inputs.
 - <u>Proof</u>: A valid argument that establishes the truth of a mathematical statement.
- Consider the following algorithm that is supposed to output the sum of elements of an integer array of size n.

Algorithm

```
FindSum(A, n)

- sum \leftarrow 0

- for i = 1 to n

- sum \leftarrow sum + A[i]

- return(sum)
```

• To prove the algorithm correct, let us define the following loop-invariant:

P(i): At the end of the i^{th} iteration, the variable *sum* contains the sum of first i elements of the array A.

- How do we argue that an algorithm is correct?
 - Proof of correctness: An argument that the algorithm works correctly for all inputs.
 - <u>Proof</u>: A valid argument that establishes the truth of a mathematical statement.
- Consider the following algorithm that is supposed to output the sum of elements of an integer array of size n.

Algorithm

```
FindSum(A, n)
- sum \leftarrow 0
```

- for i = 1 to n
- for i = 1 to n
 - sum ← sum + A[i]
- return(sum)
- To prove the algorithm correct, let us define the following loop-invariant:
 - P(i): At the end of the i^{th} iteration, the variable sum contains the sum of first i elements of the array A.
- How do we prove statements of the form $\forall i, P(i)$?

- How do we argue that an algorithm is correct?
 - Proof of correctness: An argument that the algorithm works correctly for all inputs.
 - <u>Proof</u>: A valid argument that establishes the truth of a mathematical statement.
- Consider the following algorithm that is supposed to output the sum of elements of an integer array of size n.

Algorithm

```
FindSum(A, n)
```

- sum ← 0
- for i = 1 to n
 - $sum \leftarrow sum + A[i]$
- return(sum)
- To prove the algorithm correct, let us define the following loop-invariant:
 - P(i): At the end of the i^{th} iteration, the variable sum contains the sum of first i elements of the array A.
- How do we prove statements of the form $\forall i, P(i)$?Induction

- <u>Proof</u>: A valid argument that establishes the truth of a mathematical statement.
 - The statements used in a proof can include axioms, definitions, the premises, if any, of the theorem, and previously proven theorems and uses rules of inference to draw conclusions.
- A proof technique very commonly used when proving correctness of Algorithms is Mathematical Induction.

Definition (Strong Induction)

To prove that P(n) is true for all positive integers, where P(.) is a propositional function, we complete two steps:

- Basis step: We show that P(1) is true.
- Inductive step: We show that for all k, if P(1), P(2), ..., P(k) are true, then P(k+1) is true.

Definition (Strong Induction)

To prove that P(n) is true for all positive integers, where P(.) is a propositional function, we complete two steps:

- Basis step: We show that P(1) is true.
- Inductive step: We show that for all k, if P(1), P(2), ..., P(k) are true, then P(k+1) is true.
- Question: Show that for all n > 0, $1 + 3 + ... + (2n 1) = n^2$.

• Question: Show that for all n > 0, $1 + 3 + ... + (2n - 1) = n^2$.

Proof

- Let P(n) be the proposition that 1+3+5+...+(2n-1) equals n^2 .
- Basis step: P(1) is true since the summation consists of only a single term 1 and $1^2 = 1$.
- Inductive step: Assume that P(1), P(2), ..., P(k) are true for any arbitrary integer k. Then we have:

$$1+3+...+(2(k+1)-1) = 1+3+...+(2k-1)+(2k+1)$$

= k^2+2k+1 (since $P(k)$ is true)
= $(k+1)^2$

This shows that P(k+1) is true.

Using the principle of Induction, we conclude that P(n) is true for all n > 0.

- How do we describe an algorithm?
 - Using a pseudocode.
- What are the desirable features of an algorithm?
 - 1 It should be correct.
 - We use proof of correctness to argue correctness.
 - ② It should run fast.

- How do we describe an algorithm?
 - Using a pseudocode.
- What are the desirable features of an algorithm?
 - ① It should be correct.
 - We use proof of correctness to argue correctness.
 - 2 It should run fast.
- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
 - Idea#1: Implement them on some platform, run and check.

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
 - Idea#1: Implement them on some platform, run and check.
 - The speed of programs P1 (implementation of A1) and P2 (implementation of A2) may depend on various factors:
 - Input
 - Hardware platform
 - Software platform
 - · Quality of the underlying algorithm

- Idea#1: Implement them on some platform, run and check.
- Let P1 denote implementation of A1 and P2 denote implementation of A2.
- Issues with Idea#1:
 - If P1 and P2 are run on different platforms, then the performance results are incomparable.
 - Even if P1 and P2 are run on the same platform, it does not tell us how A1 and A2 compare on some other platform.
 - There might be infinitely many inputs to compare the performance on.
 - Extra burden of implementing both algorithms where what we wanted was to first figure out which one is better and then implement just that one.
- So, what we need is a platform independent way of comparing algorithms.

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.

Solution:

- Any algorithm is expressed in terms of basic operations such as assignment, method call, arithmetic, comparison.
- For a fixed input, we will count the number of these basic operations in our algorithm. Suppose the number of these operations is b.
- We will assume that the amount of time required to execute these basic operations is at most some constant T which is independent of the input size.
- The running time of the algorithm will be at most $(b \cdot T)$.

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.

Solution:

- Any algorithm is expressed in terms of basic operations such as assignment, method call, arithmetic, comparison.
- For a fixed input, we will count the number of these basic operations in our algorithm. Suppose the number of these operations is b.
- We will assume that the amount of time required to execute these basic operations is at most some constant T which is independent of the input size.
- The running time of the algorithm will be at most $(b \cdot T)$.
- But, what about other inputs? We are interested in measuring the performance of an algorithm and not performance of an algorithm on a given input.

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- <u>Solution</u>: Count the number of basic operations.
 - How do we measure performance for all inputs?

Example

```
FindPositiveSum(A, n)

- sum \leftarrow 0

- For i = 1 to n

- if (A[i] > 0) sum \leftarrow sum + A[i]

- return(sum)
```

• Note that the number of operations grow with the array size n.

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- <u>Solution</u>: Count the number of basic operations.
 - How do we measure performance for all inputs?

Example

FindPositiveSum(A, n)

- sum ← 0
- For i = 1 to n
 - if (A[i] > 0)sum \leftarrow sum + A[i]
- return(sum)
- Note that the number of operations grow with the array size *n*.
- Even for all arrays of a fixed size *n*, the number of operations may vary depending on the numbers present in the array.

End