COL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Algorithms

Introduction

- Algorithm (informal): A step-by-step procedure for performing some task.

Algorithms Introduction

- Algorithm (informal): A step-by-step procedure for performing some task.

Definition (Algorithm)

An algorithm is a finite sequence of precise instructions for performing a computation or for solving a problem.

- Question: Are there problems that cannot be solved by any algorithm?

Introduction

- How do we describe an algorithm?
- Algorithms are platform independent and so should be their description.
- This allows us to focus on the main ideas rather than spend time parsing the programming language specific syntax and the implementation details.

Introduction

- How do we describe an algorithm?
- Algorithms are platform independent and so should be their description.
- This allows us to focus on the main ideas rather than spend time parsing the programming language specific syntax and the implementation details.
- A concise way of describing algorithm is pseudocode.
- Pseudocode is not an actual code.
- It consists of:
high-level programming constructs (if-then, for etc.) + natural language.

Introduction

- How do we describe an algorithm?
- Algorithms are platform independent and so should be their description.
- This allows us to focus on the main ideas rather than spend time parsing the programming language specific syntax and the implementation details.
- A concise way of describing algorithm is pseudocode.
- Pseudocode is not an actual code.
- It consists of: high-level programming constructs (if-then, for etc.) + natural language.

Algorithm

FindMin (A, n)

$-\min \leftarrow A[1]$

- for $i=2$ to n
- if $(A[i]<\min)$
$-\min \leftarrow A[i]$
- return(min)

Introduction

- How do we describe an algorithm?
- Algorithms are platform independent and so should be their description.
- This allows us to focus on the main ideas rather than spend time parsing the programming language specific syntax and the implementation details.
- A concise way of describing algorithm is pseudocode.
- Pseudocode is not an actual code.
- It consists of: high-level programming constructs (if-then, for etc.) + natural language.

Algorithm

FindMin (A, n)
$-\min \leftarrow A[1]$

- for $i=2$ to n
- if $A[i]$ is smaller than \min
$-\min \leftarrow A[i]$
- return(min)

Introduction

- How do we describe an algorithm?
- Using a pseudocode.
- What are the desirable features of an algorithm?

Introduction

- How do we describe an algorithm?
- Using a pseudocode.
- What are the desirable features of an algorithm?
- It should be correct.
- It should run fast.
- It should take small amount of space (RAM).
- It should consume small amount of power.
-

Introduction

- How do we describe an algorithm?
- Using a pseudocode.
- What are the desirable features of an algorithm?
(1) It should be correct.
(2) It should run fast.
- How do we argue that an algorithm is correct?

Introduction

- How do we argue that an algorithm is correct?
- Proof of correctness: An argument that the algorithm works correctly for all inputs.
- Proof: A valid argument that establishes the truth of a mathematical statement.
- Consider the following algorithm that is supposed to output the sum of elements of an integer array of size n.

Algorithm

$$
\begin{aligned}
& \text { FindSum }(A, n) \\
& \quad-\operatorname{sum} \leftarrow 0 \\
& - \text { for } i=1 \text { to } n \\
& \quad-\operatorname{sum} \leftarrow \operatorname{sum}+A[i] \\
& \text { - return }(\text { sum })
\end{aligned}
$$

Introduction

- How do we argue that an algorithm is correct?
- Proof of correctness: An argument that the algorithm works correctly for all inputs.
- Proof: A valid argument that establishes the truth of a mathematical statement.
- Consider the following algorithm that is supposed to output the sum of elements of an integer array of size n.

Algorithm

```
FindSum(A,n)
    - sum \leftarrow0
    - for i=1 to n
        - sum}\leftarrow\operatorname{sum}+A[i
    - return(sum)
```

- To prove the algorithm correct, let us define the following loop-invariant:
$P(i)$: At the end of the $i^{\text {th }}$ iteration, the variable sum contains the sum of first i elements of the array A.

Introduction

- How do we argue that an algorithm is correct?
- Proof of correctness: An argument that the algorithm works correctly for all inputs.
- Proof: A valid argument that establishes the truth of a mathematical statement.
- Consider the following algorithm that is supposed to output the sum of elements of an integer array of size n.

Algorithm

```
FindSum( }A,n\mathrm{ )
    - sum}\leftarrow
    - for i=1 to n
        - sum}\leftarrow\operatorname{sum}+A[i
    - return(sum)
```

- To prove the algorithm correct, let us define the following loop-invariant:
$P(i)$: At the end of the $i^{t h}$ iteration, the variable sum contains the sum of first i elements of the array A.
- How do we prove statements of the form $\forall i, P(i)$?

Introduction

- How do we argue that an algorithm is correct?
- Proof of correctness: An argument that the algorithm works correctly for all inputs.
- Proof: A valid argument that establishes the truth of a mathematical statement.
- Consider the following algorithm that is supposed to output the sum of elements of an integer array of size n.

Algorithm

```
FindSum( }A,n\mathrm{ )
    - sum}\leftarrow
    - for i=1 to n
        - sum}\leftarrow\operatorname{sum}+A[i
    - return(sum)
```

- To prove the algorithm correct, let us define the following loop-invariant:
$P(i)$: At the end of the $i^{t h}$ iteration, the variable sum contains the sum of first i elements of the array A.
- How do we prove statements of the form $\forall i, P(i)$? Induction

Introduction

- Proof: A valid argument that establishes the truth of a mathematical statement.
- The statements used in a proof can include axioms, definitions, the premises, if any, of the theorem, and previously proven theorems and uses rules of inference to draw conclusions.
- A proof technique very commonly used when proving correctness of Algorithms is Mathematical Induction.

Definition (Strong Induction)

To prove that $P(n)$ is true for all positive integers, where $P($.$) is a$ propositional function, we complete two steps:

- Basis step: We show that $P(1)$ is true.
- Inductive step: We show that for all k, if $P(1), P(2), \ldots, P(k)$ are true, then $P(k+1)$ is true.

Introduction

Definition (Strong Induction)

To prove that $P(n)$ is true for all positive integers, where $P($.$) is a$ propositional function, we complete two steps:

- Basis step: We show that $P(1)$ is true.
- Inductive step: We show that for all k, if $P(1), P(2), \ldots, P(k)$ are true, then $P(k+1)$ is true.
- Question: Show that for all $n>0,1+3+\ldots+(2 n-1)=n^{2}$.

Introduction

- Question: Show that for all $n>0,1+3+\ldots+(2 n-1)=n^{2}$.

Proof

- Let $P(n)$ be the proposition that $1+3+5+\ldots+(2 n-1)$ equals n^{2}.
- Basis step: $P(1)$ is true since the summation consists of only a single term 1 and $1^{2}=1$.
- Inductive step: Assume that $P(1), P(2), \ldots, P(k)$ are true for any arbitrary integer k. Then we have:

$$
\begin{aligned}
1+3+\ldots+(2(k+1)-1) & =1+3+\ldots+(2 k-1)+(2 k+1) \\
& =k^{2}+2 k+1 \quad(\text { since } P(k) \text { is true }) \\
& =(k+1)^{2}
\end{aligned}
$$

This shows that $P(k+1)$ is true.

- Using the principle of Induction, we conclude that $P(n)$ is true for all $n>0$.

Introduction

- How do we describe an algorithm?
- Using a pseudocode.
- What are the desirable features of an algorithm?
(1) It should be correct.
- We use proof of correctness to argue correctness.
(2) It should run fast.

Introduction

- How do we describe an algorithm?
- Using a pseudocode.
- What are the desirable features of an algorithm?
(1) It should be correct.
- We use proof of correctness to argue correctness.
(2) It should run fast.
- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- Idea\#1: Implement them on some platform, run and check.

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- Idea\#1: Implement them on some platform, run and check.
- The speed of programs P1 (implementation of A1) and P2 (implementation of A2) may depend on various factors:
- Input
- Hardware platform
- Software platform
- Quality of the underlying algorithm

Introduction

- Idea\#1: Implement them on some platform, run and check.
- Let P1 denote implementation of A1 and P2 denote implementation of A2.
- Issues with Idea\#1:
- If P1 and P2 are run on different platforms, then the performance results are incomparable.
- Even if P1 and P2 are run on the same platform, it does not tell us how A1 and A2 compare on some other platform.
- There might be infinitely many inputs to compare the performance on.
- Extra burden of implementing both algorithms where what we wanted was to first figure out which one is better and then implement just that one.
- So, what we need is a platform independent way of comparing algorithms.

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- Solution:
- Any algorithm is expressed in terms of basic operations such as assignment, method call, arithmetic, comparison.
- For a fixed input, we will count the number of these basic operations in our algorithm. Suppose the number of these operations is b.
- We will assume that the amount of time required to execute these basic operations is at most some constant T which is independent of the input size.
- The running time of the algorithm will be at most ($b \cdot T$).

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- Solution:
- Any algorithm is expressed in terms of basic operations such as assignment, method call, arithmetic, comparison.
- For a fixed input, we will count the number of these basic operations in our algorithm. Suppose the number of these operations is b.
- We will assume that the amount of time required to execute these basic operations is at most some constant T which is independent of the input size.
- The running time of the algorithm will be at most ($b \cdot T$).
- But, what about other inputs? We are interested in measuring the performance of an algorithm and not performance of an algorithm on a given input.

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- Solution: Count the number of basic operations.
- How do we measure performance for all inputs?

Example

FindPositiveSum (A, n)

- sum $\leftarrow 0$
- For $i=1$ to n
- if $(A[i]>0)$ sum $\leftarrow \operatorname{sum}+A[i]$
- return(sum)
- Note that the number of operations grow with the array size n.

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform independent way of comparing algorithms.
- Solution: Count the number of basic operations.
- How do we measure performance for all inputs?

Example

```
FindPositiveSum ( \(A, n\) )
    - sum \(\leftarrow 0\)
    - For \(i=1\) to \(n\)
    - if \((A[i]>0)\) sum \(\leftarrow \operatorname{sum}+A[i]\)
- return(sum)
```

- Note that the number of operations grow with the array size n.
- Even for all arrays of a fixed size n, the number of operations may vary depending on the numbers present in the array.

End

