# COL202: Discrete Mathematical Structures

# Ragesh Jaiswal, CSE, IIT Delhi

Ragesh Jaiswal, CSE, IIT Delhi COL202: Discrete Mathematical Structures

# Basic Structure: Sets, Functions, Sequences, Sums, and Matrices

# Basic Structures Sets

## Definition (Set)

A set is an unordered collection of objects, called *elements* or *members* of a set. A set is said to *contain* its elements. We write  $a \in A$  to denote that a is an element of the set A. The notation  $a \notin A$  denotes that a is not an element of the set A.

- Examples:
  - S<sub>1</sub> = {1,3,5,7,9}
     S<sub>3</sub> = {x|x is an odd positive integer less than 10}
  - $S_2 = \{1, 2, 3, ..., 99\}$
  - $\mathbb{N}=\{0,1,2,3,...\},$  the set of natural numbers.
  - $\mathbb{Z}=\{...,-2,-1,0,1,2,...\},$  the set of integers.
  - $\mathbb{Z}^+ = \{1, 2, ...\}$ , the set of positive integers.
  - $\mathbb{Q} = \{p/q | p \in \mathbb{Z}, q \in \mathbb{Z}, \text{ and } q \neq 0\}$ , the set of rational numbers.
  - $\bullet~\mathbb{R},$  the set of real numbers.
  - $\mathbb{R}^+$ , the set of positive real numbers.
  - $\bullet~\mathbb{C},$  the set of complex numbers.

(日本) (日本) (日本)

# Basic Structures Sets

## Definition (Set)

A set is an unordered collection of objects, called *elements* or *members* of a set. A set is said to *contain* its elements. We write  $a \in A$  to denote that a is an element of the set A. The notation  $a \notin A$  denotes that a is not an element of the set A.

• Examples: Intervals (closed and open)

• 
$$[a, b] = \{x | a \le x \le b\}$$
  
•  $[a, b) = \{x | a \le x < b\}$   
•  $(a, b] = \{x | a < x \le b\}$ 

• 
$$(a, b) = \{x | a < x < b\}$$

### Definition (Equality of Sets)

Two sets are *equal* if and only if they have the same elements. Therefore, if A and B are sets, then A and B are equal if and only if  $\forall x (x \in A \leftrightarrow x \in B)$ . We write A = B if A and B are equal sets.

- Are the following sets equal?
  - $\{1,3,5\}$  and  $\{3,1,5\}$
  - $\{1,3,5\}$  and  $\{1,1,3,3,3,5,5\}$
- A set with no elements is called an *empty set* or *null set*. It is denoted by Ø or by {}.
- A set with one element is called a *singleton set*.

# Basic Structures Sets

- Venn Diagram
  - Used to represents graphically and indicate relationships between sets.
  - The *Universal set* (all objects under consideration) is represented using a rectangle.
  - Geometric figures (typically circle) inside the rectangle are used to represent sets.
  - Dots are used to represent elements.



Figure: Venn diagram for the set of vowels

# Basic Structures Sets

#### Definition (Subset)

A set A is a *subset* of B if and only if every element of A is also an element of B. We use the notation  $A \subseteq B$  to indicate that A is the subset of the set B.

• For any sets  $A, B, A \subseteq B$  iff  $\forall x (x \in A \rightarrow x \in B)$  is true.



Figure: Venn diagram showing that  $A \subseteq B$ .



# Definition (Subset)

A set A is a *subset* of B if and only if every element of A is also an element of B. We use the notation  $A \subseteq B$  to indicate that A is the subset of the set B.

- A set A is said to be a proper subset of a set B if A is a subset of B but A ≠ B.
- Write in terms of a quantified expression.

## Definition (Subset)

A set A is a *subset* of B if and only if every element of A is also an element of B. We use the notation  $A \subseteq B$  to indicate that A is the subset of the set B.

- A set A is said to be a proper subset of a set B if A is a subset of B but A ≠ B.
- Write in terms of a quantified expression:  $\forall x(x \in A \rightarrow x \in B) \land \exists y(y \in B \land y \notin A).$

# Definition (Subset)

A set A is a *subset* of B if and only if every element of A is also an element of B. We use the notation  $A \subseteq B$  to indicate that A is the subset of the set B.

#### Theorem

Two sets A and B are equal if and only if  $A \subseteq B$  and  $B \subseteq A$ .

#### Definition (Size of a set)

Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a *finite set* and that n is the cardinality of S. The cardinality of S is denoted by |S|.

#### Definition (Infinite set)

A set is said to be infinite if it is not finite. (Example: set of positive integers)

#### Definition (Power set)

Given a set S, the *power set* of S is the set of all subsets of the set S. The power set of S is denoted by  $\mathcal{P}(S)$ .

- Examples:
  - $\mathcal{P}(\{1,2,3\}) = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}\}$
  - $\mathcal{P}(\varnothing) = \{\varnothing\}.$
  - If a set has *n* elements, how many elements does the power set have?

The ordered *n*-tuple  $(a_1, a_2, ..., a_n)$  is the ordered collection that has  $a_1$  as its first element,  $a_2$  as its second element, ..., and  $a_n$  as its *n*<sup>th</sup> element.

### Definition (Cartesian product of two sets)

Let A and B be sets. The *cartesian product* of A and B, denoted by  $A \times B$ , is the set of all ordered pairs (a, b), where  $a \in A$  and  $b \in B$ . Hence,

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

• Example:

• 
$$A = \{1, 2\}, B = \{a, b, c\}$$

• 
$$A \times B = \hat{P}$$

• 
$$B \times A = ?$$

The ordered *n*-tuple  $(a_1, a_2, ..., a_n)$  is the ordered collection that has  $a_1$  as its first element,  $a_2$  as its second element, ..., and  $a_n$  as its  $n^{th}$  element.

## Definition (Cartesian product of two sets)

Let A and B be sets. The *cartesian product* of A and B, denoted by  $A \times B$ , is the set of all ordered pairs (a, b), where  $a \in A$  and  $b \in B$ . Hence,

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

• Example:

• 
$$A = \{1, 2\}, B = \{a, b, c\}$$

- $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$
- $B \times A = \{(a,1), (b,1), (c,1), (a,2), (b,2), (c,2)\}$

The ordered *n*-tuple  $(a_1, a_2, ..., a_n)$  is the ordered collection that has  $a_1$  as its first element,  $a_2$  as its second element, ..., and  $a_n$  as its  $n^{th}$  element.

#### Definition (Cartesian product)

The Cartesian product of the sets  $A_1, A_2, ..., A_n$ , denoted by  $A_1 \times A_2 \times ... \times A_n$ , is the set of ordered *n*-tuples  $(a_1, a_2, ..., a_n)$ , where  $a_i$  belongs to  $A_i$  for i = 1, 2, ..., n. In other words,

 $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) | a_i \in A_i \text{ for } i = 1, 2, ..., n\}.$ 

The ordered *n*-tuple  $(a_1, a_2, ..., a_n)$  is the ordered collection that has  $a_1$  as its first element,  $a_2$  as its second element, ..., and  $a_n$  as its  $n^{th}$  element.

#### Definition (Cartesian product)

The Cartesian product of the sets  $A_1, A_2, ..., A_n$ , denoted by  $A_1 \times A_2 \times ... \times A_n$ , is the set of ordered *n*-tuples  $(a_1, a_2, ..., a_n)$ , where  $a_i$  belongs to  $A_i$  for i = 1, 2, ..., n. In other words,

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) | a_i \in A_i \text{ for } i = 1, 2, ..., n\}.$$

#### Definition (Relation)

A subset *R* of the Cartesian product  $A \times B$  is called a *relation* from the set *A* to the set *B*. A relation from a set *A* to itself is called a relation on *A*.

同下 イヨト イヨト

- Given a predicate P, and a domain D, we define the truth set of P to be the set of elements x in D for which P(x) is true. The truth set of P(x) is denoted by {x ∈ D|P(x)}.
- Examples: Consider predicates P(x) : |x| = 1,  $Q(x) : x^2 = 2$ , and R(x) : |x| = x and let the domain be the set of integers.
  - Truth set of P(x) = ?
  - Truth set of Q(x) = ?
  - Truth set of R(x) = ?

- Given a predicate P, and a domain D, we define the truth set of P to be the set of elements x in D for which P(x) is true. The truth set of P(x) is denoted by {x ∈ D|P(x)}.
- Examples: Consider predicates P(x): |x| = 1, Q(x): x<sup>2</sup> = 2, and R(x): |x| = x and let the domain be the set of integers.
  - Truth set of  $P(x) = \{-1, 1\}$
  - Truth set of  $Q(x) = \emptyset$
  - Truth set of  $R(x) = \mathbb{N}$

# Set operations

Ragesh Jaiswal, CSE, IIT Delhi COL202: Discrete Mathematical Structures

문 문 문

# Definition (Union of sets)

Let A and B be sets. The *union* of the sets A and B, denoted by  $A \cup B$ , is the set that contains those elements that are in A or in B (this includes the element being present in both).

• 
$$A \cup B = \{x | x \in A \lor x \in B\}.$$

#### Definition (Intersection of sets)

Let A and B be sets. The *intersection* of the sets A and B, denoted by  $A \cap B$ , is the set that contains those elements that are both in A and in B.

- $A \cap B = \{x | x \in A \land x \in B\}.$
- Two sets are called *disjoint* if their intersection is the empty set.
- Show that  $|A \cup B| = |A| + |B| |A \cap B|$ .

### Definition (Union of sets)

Let A and B be sets. The *union* of the sets A and B, denoted by  $A \cup B$ , is the set that contains those elements that are in A or in B (this includes the element being present in both).

#### Definition (Intersection of sets)

Let A and B be sets. The *intersection* of the sets A and B, denoted by  $A \cap B$ , is the set that contains those elements that are both in A and in B.



#### Definition (Diffrence of sets)

Let A and B be sets. The *difference* of the sets A and B, denoted by A - B, is the set containing those elements that are in A but not in B. The difference of A and B is also called the *complement* of B with respect to A.

- $A-B = \{x | x \in A \land x \notin B\}.$
- The difference of sets A and B is sometimes denoted by  $A \setminus B$ .

#### Definition (Complement of a set)

Let *U* be the universal set. The *complement* of the set *A* denoted by  $\overline{A}$  is the complement of *A* with respect to *U*. Therefore, the complement of the set *A* is U - A.

- $\bar{A} = \{x \in U | x \notin A\}.$
- Show that  $A B = A \cap \overline{B}$ .

#### Definition (Diffrence of sets)

Let A and B be sets. The *difference* of the sets A and B, denoted by A - B, is the set containing those elements that are in A but not in B. The difference of A and B is also called the *complement* of B with respect to A.

#### Definition (Complement of a set)

Let *U* be the universal set. The *complement* of the set *A* denoted by  $\overline{A}$  is the complement of *A* with respect to *U*. Therefore, the complement of the set *A* is U - A.



- Show that  $\overline{A \cap B} = \overline{A} \cup \overline{B}$ .
  - Show (1)  $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$ , and (2)  $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$ .
  - Use set builder notation.
  - Use a membership table.

| Identity                        | Name                |
|---------------------------------|---------------------|
| $A \cap U = ?$                  | Identity laws       |
| $A \cup \varnothing = ?$        |                     |
| $A \cup U = ?$                  | Domination laws     |
| $A \cap \varnothing = ?$        |                     |
| $A \cup A = ?$                  | Idempotent laws     |
| $A \cap A = ?$                  |                     |
| $\overline{(\overline{A})} = ?$ | Complementation law |
| $A \cup B = B \cup ?$           | Commutative laws    |
| $A \cap B = B \cap ?$           |                     |
| $A \cup (B \cup C) = ?$         | Associative laws    |
| $A \cap (B \cap C) = ?$         |                     |
| $A \cup (B \cap C) = ?$         | Distributive laws   |
| $A \cap (B \cup C) = ?$         |                     |

Table: Set identities.

э

# Basic Structures Set operations

| Identity                                         | Name                |
|--------------------------------------------------|---------------------|
| $A \cap U = A$                                   | Identity laws       |
| $A \lor \varnothing = A$                         |                     |
| $A \cup U = U$                                   | Domination laws     |
| $A \cap \varnothing = \varnothing$               |                     |
| $A \cup A = A$                                   | Idempotent laws     |
| $A \cap A = A$                                   |                     |
| $\overline{(\overline{A})} = A$                  | Complementation law |
| $A \cup B = B \cup A$                            | Commutative laws    |
| $A \cap B = B \cap A$                            |                     |
| $A \cup (B \cup C) = (A \cup B) \cup C$          | Associative laws    |
| $A \cap (B \cap C) = (A \cap B) \cap C$          |                     |
| $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ | Distributive laws   |
| $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ |                     |

Table: Set identities.

A B + A B +
 A

3

| Idenitity                   | Name             |
|-----------------------------|------------------|
| $\overline{(A \cap B)} = ?$ | De Morgan's laws |
| $\overline{(A \cup B)} = ?$ |                  |
| $A \cup (A \cap B) = ?$     | Absorption laws  |
| $A \cap (A \cup B) = ?$     |                  |
| $A \cup \overline{A} = ?$   | Complement laws  |
| $A \cap \overline{A} = ?$   |                  |

Table: Set identities.

Image: A Image: A

э

# Basic Structures Set operations

| Idenitity                                                | Name                |
|----------------------------------------------------------|---------------------|
| $A \cap U = A$                                           | Identity laws       |
| $A \lor \varnothing = A$                                 |                     |
| $A \cup U = U$                                           | Domination laws     |
| $A \cap \varnothing = \varnothing$                       |                     |
| $A \cup A = A$                                           | Idempotent laws     |
| $A \cap A = A$                                           |                     |
| $\overline{(\overline{A})} = A$                          | Complementation law |
| $A \cup B = B \cup A$                                    | Commutative laws    |
| $A \cap B = B \cap A$                                    |                     |
| $A \cup (B \cup C) = (A \cup B) \cup C$                  | Associative laws    |
| $A \cap (B \cap C) = (A \cap B) \cap C$                  |                     |
| $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$         | Distributive laws   |
| $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$         |                     |
| $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$ | De Morgan's laws    |
| $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$ |                     |
| $A \cup (A \cap B) = A$                                  | Absorption laws     |
| $A \cap (A \cup B) = A$                                  |                     |
| $A \cup \overline{A} = U$                                | Complement laws     |
| $A \cap \overline{A} = \emptyset$                        |                     |

Table: Set identities.

• Use set identities to show that  $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$ .

3

| 4 同 ト 4 ヨ ト 4 ヨ ト

## Basic Structures: Functions

→ Ξ → < Ξ →</p>

Э

# Definition (Function)

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write  $f : A \rightarrow B$ .

#### Definition

If f is a function from A to B, we say that A is the domain of f and B is the codomain of f. If f(a) = b, we say that b is the *image* of a and a is a *preimage* of b. The *range*, or image, of f is the set of all images of elements of A. Also, if f is a function from A to B, we say that f maps A to B.

#### Definition (Function)

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write  $f : A \rightarrow B$ .

#### Definition

If f is a function from A to B, we say that A is the *domain* of f and B is the *codomain* of f. If f(a) = b, we say that b is the *image* of a and a is a *preimage* of b. The *range*, or image, of f is the set of all images of elements of A. Also, if f is a function from A to B, we say that f maps A to B.

- Let  $f : \mathbb{Z} \to \mathbb{Z}$  assign the square of an integer to this integer.
  - What is the codomain of f?
  - What is the range of f?

向下 イヨト イヨト

# Definition (real/integers-valued functions)

A function is called *real-valued* if its codomain is the set of real numbers, and it is called *integer-valued* if its codomain is the set of integers.

Definition (Sum/product of real/integer-valued functions)

Let  $f_1$  and  $f_2$  be functions from A to  $\mathbb{R}$ . Then  $f_1 + f_2$  and  $f_1f_2$  are also functions from A to  $\mathbb{R}$  defined for all  $x \in A$  by

 $(f_1 + f_2)(x) = f_1(x) + f_2(x),$   $(f_1f_2)(x) = f_1(x)f_2(x).$ 

Example: Let f₁ and f₂ be functions from ℝ to ℝ such that f₁(x) = x² and f₂(x) = x - x². The what are:
(f₁ + f₂)(x) =?
(f₁ f₂)(x) =?

Let f be a function from A to B and let S be a subset of A. The image of S under the function f is the subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so

$$f(S) = \{t | \exists s \in S(t = f(s))\}.$$

We also use the shorthand  $\{f(s)|s \in S\}$  to denote this set.

• Let 
$$A = \{a, b, c, d, e\}$$
 and  $B = \{1, 2, 3, 4\}$  with  $f(a) = 2, f(b) = 1, f(c) = 4, f(d) = 1, and f(e) = 1$ . The image of the subset  $S = \{b, c, d\}$  is the set  $f(S) = ?$ .

Let f be a function from A to B and let S be a subset of A. The image of S under the function f is the subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so

$$f(S) = \{t | \exists s \in S(t = f(s))\}.$$

We also use the shorthand  $\{f(s)|s \in S\}$  to denote this set.

• Let 
$$A = \{a, b, c, d, e\}$$
 and  $B = \{1, 2, 3, 4\}$  with  $f(a) = 2, f(b) = 1, f(c) = 4, f(d) = 1, and f(e) = 1$ . The image of the subset  $S = \{b, c, d\}$  is the set  $f(S) = \{1, 4\}$ .

A function f is said to be *one-to-one*, or an *injunction*, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be *injective* if it is one-to-one.

• Consider a function  $f : \mathbb{Z} \to \mathbb{Z}$  defined as  $f(x) = x^2$ . Is this function one-to-one?

A function f is said to be *one-to-one*, or an *injunction*, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be *injective* if it is one-to-one.

• Consider a function  $f : \mathbb{Z} \to \mathbb{Z}$  defined as  $f(x) = x^2$ . Is this function one-to-one? No

A function f is said to be *one-to-one*, or an *injunction*, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be injective if it is one-to-one.

#### Definition (Increasing/decreasing functions)

A function f whose domain and codomain are subsets of the set of real numbers is called *increasing* if  $f(x) \le f(y)$ , and *strictly increasing* if f(x) < f(y), whenever x < y and x and y are in the domain of f. Similarly, f is called *decreasing* if  $f(x) \ge f(y)$ , and *strictly decreasing* if f(x) > f(y), whenever x < y and x and y are in the domain of f. (The word strictly in this definition indicates a strict inequality.)

• Prove or disprove: A strictly increasing function from  $\mathbb R$  to  $\mathbb R$  is one-to-one.

・ 同 ト ・ ヨ ト ・ ヨ ト

A function f is said to be *one-to-one*, or an *injunction*, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be injective if it is one-to-one.

### Definition (Onto functions)

A function f from A to B is called *onto*, or a *surjection*s, if and only if for every element  $b \in B$  there is an element  $a \in A$  with f(a) = b. A function f is called *surjective* if it is onto.

• Is the function  $f(x) = x^2$  from  $\mathbb{Z}$  to  $\mathbb{Z}$  onto?

向下 イヨト イヨト

# Basic Structures

#### Definition (One-to-one functions)

A function f is said to be *one-to-one*, or an *injunction*, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be injective if it is one-to-one.

#### Definition (Onto functions)

A function f from A to B is called *onto*, or a *surjection*s, if and only if for every element  $b \in B$  there is an element  $a \in A$  with f(a) = b. A function f is called *surjective* if it is onto.

#### Definition (Bijection)

The function f is a *one-to-one correspondence*, or a *bijection*, if it is both one-to-one and onto. We also say that such a function is *bijective*.



- Suppose that  $f : A \rightarrow B$ .
  - To show that f is injective: Show that if f(x) = f(y) for arbitrary  $x, y \in A$ , then x = y.
  - To show that f is not injective: Find particular elements  $x, y \in A$  such that  $x \neq y$  and f(x) = f(y).
  - To show that is surjective: Consider an arbitrary element  $y \in B$  and find an element  $x \in A$  such that f(x) = y.
  - To show that f is not surjective: Find a particular y ∈ B such that f(x) ≠ y for all x ∈ A.

#### Definition (Inverse function)

Let f be a one-to-one correspondence from the set A to the set B. The *inverse* function of f is the function that assigns to an element b belonging to B the unique element a in A such that f(a) = b. The inverse function of f is denoted by  $f^{-1}$ . Hence,  $f^{-1}(b) = a$  when f(a) = b.

• Example: Let f be a function from  $\mathbb{R}$  to  $\mathbb{R}$  with  $f(x) = x^2$ . Is f invertible?

### Definition (Composition of functions)

Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The *composition* of the functions f and g, denoted for all  $a \in A$  by  $f \circ g$ , is defined by  $(f \circ g)(a) = f(g(a))$ .

- Example: Let f : Z → Z and g : Z → Z be functions defined as f(x) = 2x + 3 and g(x) = 3x + 2. What is the composition of f and g? What is the composition of g and f?
- For any function f, what is the composition of f and  $f^{-1}$ ?
- For any function f, what is the composition of  $f^{-1}$  and f?

伺下 イヨト イヨト

# Definition (Graph of functions)

Let f be a function from the set A to the set B. The graph of a function f is the set of ordered pairs  $\{(a, b)|a \in A \text{ and } f(a) = b\}$ .



Figure: The graph of  $f(x) = x^2$  from  $\mathbb{Z}$  to  $\mathbb{Z}$ .

#### Definition (Partial functions)

A partial function f from a set A to a set B is an assignment to each element a in a subset of A, called the domain of definition of f, of a unique element b in B. The sets A and B are called the domain and codomain of f, respectively. We say that f is undefined for elements in A that are not in the domain of definition of f. When the domain of definition of f equals A, we say that f is a total function.

 The function f : Z → R where f(n) = √n is a partial function from Z to R where the domain of definition is the set of nonnegative integers.

# Sequences and summations

Ragesh Jaiswal, CSE, IIT Delhi COL202: Discrete Mathematical Structures

Э

## Definition (Sequence)

A sequence is a function from a subset of the set of integers (usually either the set  $\{0, 1, 2, ...\}$  or the set  $\{1, 2, 3, ...\}$ ) to a set S. We use the notation  $a_n$  to denote the image of the integer n. We call  $a_n$  a term of the sequence.

- We use the notation  $\{a_n\}$  to describe the sequence.
- Example:  $\{a_n\}$  where  $a_n = 1/n$ . The terms of this sequence, beginning with  $a_1$  is 1, 1/2, 1/3, 1/4, ....

## Definition (Geometric progression)

A geometric progression is a sequence of the form  $a, ar, ar^2, ..., ar^n, ...$  where the initial term a and the common ratio r are real numbers.

# Definition (Arithmetic progression)

An arithmetic progression is a sequence of the form a, a + d, a + 2d, ..., a + nd, ... where the initial term a and the common difference d are real numbers.

A recurrence relation for the sequence  $\{a_n\}$  is an equation that expresses  $a_n$  in terms of one or more of the previous terms of the sequence, namely,  $a_0, a_1, ..., a_{n-1}$ , for all integers n with  $n \ge n_0$ , where  $n_0$  is a nonnegative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

• Example:  $\{a_n\}$  is a sequence that satisfies the recurrence relation  $a_n = a_{n-1} - a_{n-2}$  for n = 2, 3, 4, ... and  $a_0 = 3$  and  $a_1 = 5$ .

A recurrence relation for the sequence  $\{a_n\}$  is an equation that expresses  $a_n$  in terms of one or more of the previous terms of the sequence, namely,  $a_0, a_1, ..., a_{n-1}$ , for all integers n with  $n \ge n_0$ , where  $n_0$  is a nonnegative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

- The *initial conditions* for a recursively defined sequence specify the terms that precede the first term where the recurrence relation takes effect.
- We say that we have solved the recurrence relation together with the initial conditions when we find an explicit formula, called a *closed formula*, for the terms of the sequence.

A recurrence relation for the sequence  $\{a_n\}$  is an equation that expresses  $a_n$  in terms of one or more of the previous terms of the sequence, namely,  $a_0, a_1, ..., a_{n-1}$ , for all integers n with  $n \ge n_0$ , where  $n_0$  is a nonnegative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

• Solve the following recurrence relation and the initial condition:  $a_n = a_{n-1} + 3$  for n = 1, 2, 3, ... and  $a_0 = 2$ .

A recurrence relation for the sequence  $\{a_n\}$  is an equation that expresses  $a_n$  in terms of one or more of the previous terms of the sequence, namely,  $a_0, a_1, ..., a_{n-1}$ , for all integers n with  $n \ge n_0$ , where  $n_0$  is a nonnegative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

• Solve the following recurrence relation and the initial condition:  $a_n = a_{n-1} + 3$  for n = 1, 2, 3, ... and  $a_0 = 2$ .  $(a_n = 3n + 2)$ 

# Cardinality of Sets

Ragesh Jaiswal, CSE, IIT Delhi COL202: Discrete Mathematical Structures

3 k 3

The sets A and B have the same cardinality if there is a one-to-one correspondence from A to B. When A and B have the same cardinality, we write |A| = |B|.

#### Definition

If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write  $|A| \le |B|$ . The cardinality of A is less than the cardinality of B, written as |A| < |B|, if there is an injection but no surjection from A to B.

#### Definition (Countable and uncountable sets)

A set that is either finite or has the same cardinality as the set of positive integers is called *countable*. A set that is not countable is called *uncountable*.

伺下 イラト イラト

#### Definition (Countable and uncountable sets)

A set that is either finite or has the same cardinality as the set of positive integers is called *countable*. A set that is not countable is called *uncountable*.

• Show that the set of odd positive integers is a countable set.

#### Definition (Countable and uncountable sets)

A set that is either finite or has the same cardinality as the set of positive integers is called *countable*. A set that is not countable is called *uncountable*.

• An infinite set is countable if and only if it is possible to list the elements of the set in a sequence (indexed by the positive integers).

The sets A and B have the same cardinality if there is a one-to-one correspondence from A to B. When A and B have the same cardinality, we write |A| = |B|.

#### Definition

If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write  $|A| \le |B|$ . The cardinality of A is less than the cardinality of B, written as |A| < |B|, if there is an injection but no surjection from A to B.

The sets A and B have the same cardinality if there is a one-to-one correspondence from A to B. When A and B have the same cardinality, we write |A| = |B|.

#### Definition

If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write  $|A| \le |B|$ . The cardinality of A is less than the cardinality of B, written as |A| < |B|, if there is an injection but no surjection from A to B.

#### Theorem

Let S be a set. Then  $|S| < |\mathcal{P}(S)|$ .

ヨト イヨト イヨト

If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write  $|A| \le |B|$ . The cardinality of A is less than the cardinality of B, written as |A| < |B|, if there is an injection but no surjection from A to B.

#### Theorem

Let S be a set. Then  $|S| < |\mathcal{P}(S)|$ .

#### Proof sketch

- We need to show the following:
  - **1** <u>Claim 1</u>: There is an injection from S to  $\mathcal{P}(S)$ .
  - **2** <u>Claim 2</u>: There is no surjection from S to  $\mathcal{P}(S)$ .

伺下 イヨト イヨト

If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write  $|A| \le |B|$ . The cardinality of A is less than the cardinality of B, written as |A| < |B|, if there is an injection but no surjection from A to B.

#### Theorem

Let S be a set. Then  $|S| < |\mathcal{P}(S)|$ .

#### Proof sketch

- We need to show the following:
  - **1** <u>Claim 1</u>: There is an injection from S to  $\mathcal{P}(S)$ .
    - Consider a function  $f: S \rightarrow \mathcal{P}(S)$  defined as: for any
      - $s \in S, f(s) = \{s\}$ . This is an injective function.
  - **2** <u>Claim 2</u>: There is no surjection from S to  $\mathcal{P}(S)$ .

マロト イラト イラト

If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write  $|A| \le |B|$ . The cardinality of A is less than the cardinality of B, written as |A| < |B|, if there is an injection but no surjection from A to B.

#### Theorem

Let S be a set. Then  $|S| < |\mathcal{P}(S)|$ .

#### Proof sketch



- **1** <u>Claim 1</u>: There is an injection from S to  $\mathcal{P}(S)$ .
  - Consider a function  $f:S
    ightarrow\mathcal{P}(S)$  defined as: for any
    - $s \in S, f(s) = \{s\}$ . This is an injective function.
- **2** <u>Claim 2</u>: There is no surjection from S to  $\mathcal{P}(S)$ .
  - Consider any function f : S → P(S) and consider the following set defined in terms of this function: A = {x|x ∉ f(x)}
  - Claim 2.1: There does not exist an element  $s \in S$  such that f(s) = A.

# Basic Structures Cardinality of Sets

#### Definition

If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write  $|A| \le |B|$ . The cardinality of A is less than the cardinality of B, written as |A| < |B|, if there is an injection but no surjection from A to B.

#### Theorem

Let S be a set. Then  $|S| < |\mathcal{P}(S)|$ .

#### Proof sketch

- We need to show the following:
  - O <u>Claim 1</u>: There is an injection from S to P(S).
    - Consider a function  $f: S \to \mathcal{P}(S)$  defined as: for any  $s \in S, f(s) = \{s\}$ . This is an injective function.
  - Claim 2: There is no surjection from S to P(S).
    - Consider any function f : S → P(S) and consider the following set defined in terms of this function: A = {x|x ∉ f(x)}
    - Claim 2.1: There does not exist an element  $s \in S$  such that f(s) = A.
    - Proof: For the sake of contradiction, assume that there is an s ∈ S such that f(s) = A. The following bi-implications follow:

$$s \in A \quad \leftrightarrow \quad s \in \{x | x \notin f(x) \\ \leftrightarrow \quad s \notin f(s) \\ \leftrightarrow \quad s \notin A$$

This is a contradiction. Hence the statement of the claim holds.

# End

Ragesh Jaiswal, CSE, IIT Delhi COL202: Discrete Mathematical Structures

・ロト ・部 ト ・ヨト ・ヨト

3