COL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Basic Structure: Sets, Functions, Sequences, Sums, and Matrices

Basic Structures Sets

Definition (Set)

A set is an unordered collection of objects, called elements or members of a set. A set is said to contain its elements. We write $a \in A$ to denote that a is an element of the set A. The notation $a \notin A$ denotes that a is not an element of the set A.

- Examples:
- $S_{1}=\{1,3,5,7,9\}$
- $S_{3}=\{x \mid x$ is an odd positive integer less than 10$\}$
- $S_{2}=\{1,2,3, \ldots, 99\}$
- $\mathbb{N}=\{0,1,2,3, \ldots\}$, the set of natural numbers.
- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$, the set of integers.
- $\mathbb{Z}^{+}=\{1,2, \ldots\}$, the set of positive integers.
- $\mathbb{Q}=\{p / q \mid p \in \mathbb{Z}, q \in \mathbb{Z}$, and $q \neq 0\}$, the set of rational numbers.
- \mathbb{R}, the set of real numbers.
- \mathbb{R}^{+}, the set of positive real numbers.
- \mathbb{C}, the set of complex numbers.

Basic Structures Sets

Definition (Set)

A set is an unordered collection of objects, called elements or members of a set. A set is said to contain its elements. We write $a \in A$ to denote that a is an element of the set A. The notation $a \notin A$ denotes that a is not an element of the set A.

- Examples: Intervals (closed and open)
- $[a, b]=\{x \mid a \leq x \leq b\}$
- $[a, b)=\{x \mid a \leq x<b\}$
- $(a, b]=\{x \mid a<x \leq b\}$
- $(a, b)=\{x \mid a<x<b\}$

Basic Structures Sets

Definition (Equality of Sets)

Two sets are equal if and only if they have the same elements. Therefore, if A and B are sets, then A and B are equal if and only if $\forall x(x \in A \leftrightarrow x \in B)$. We write $A=B$ if A and B are equal sets.

- Are the following sets equal?
- $\{1,3,5\}$ and $\{3,1,5\}$
- $\{1,3,5\}$ and $\{1,1,3,3,3,5,5\}$
- A set with no elements is called an empty set or null set. It is denoted by \varnothing or by $\}$.
- A set with one element is called a singleton set.

Basic Structures
 Sets

- Venn Diagram
- Used to represents graphically and indicate relationships between sets.
- The Universal set (all objects under consideration) is represented using a rectangle.
- Geometric figures (typically circle) inside the rectangle are used to represent sets.
- Dots are used to represent elements.

Figure: Venn diagram for the set of vowels

Basic Structures Sets

Definition (Subset)

A set A is a subset of B if and only if every element of A is also an element of B. We use the notation $A \subseteq B$ to indicate that A is the subset of the set B.

- For any sets $A, B, A \subseteq B$ iff $\forall x(x \in A \rightarrow x \in B)$ is true.

Figure: Venn diagram showing that $A \subseteq B$.

Theorem

For every set S, (i) $\varnothing \subseteq S$ and (ii) $S \subseteq S$.

Basic Structures Sets

Definition (Subset)

A set A is a subset of B if and only if every element of A is also an element of B. We use the notation $A \subseteq B$ to indicate that A is the subset of the set B.

- A set A is said to be a proper subset of a set B if A is a subset of B but $A \neq B$.
- Write in terms of a quantified expression.

Basic Structures Sets

Definition (Subset)

A set A is a subset of B if and only if every element of A is also an element of B. We use the notation $A \subseteq B$ to indicate that A is the subset of the set B.

- A set A is said to be a proper subset of a set B if A is a subset of B but $A \neq B$.
- Write in terms of a quantified expression:

$$
\forall x(x \in A \rightarrow x \in B) \wedge \exists y(y \in B \wedge y \notin A)
$$

Basic Structures Sets

Definition (Subset)

A set A is a subset of B if and only if every element of A is also an element of B. We use the notation $A \subseteq B$ to indicate that A is the subset of the set B.

Theorem

Two sets A and B are equal if and only if $A \subseteq B$ and $B \subseteq A$.

Basic Structures Sets

Definition (Size of a set)

Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted by $|S|$.

Definition (Infinite set)

A set is said to be infinite if it is not finite. (Example: set of positive integers)

Definition (Power set)

Given a set S, the power set of S is the set of all subsets of the set S.
The power set of S is denoted by $\mathcal{P}(S)$.

- Examples:
- $\mathcal{P}(\{1,2,3\})=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}\}$
- $\mathcal{P}(\varnothing)=\{\varnothing\}$.
- If a set has n elements, how many elements does the power set have?

Basic Structures Sets

Definition (Ordered n-tuple)

The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the ordered collection that has a_{1} as its first element, a_{2} as its second element, \ldots, and a_{n} as its $n^{\text {th }}$ element.

Definition (Cartesian product of two sets)

Let A and B be sets. The cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Hence,

$$
A \times B=\{(a, b) \mid a \in A \wedge b \in B\}
$$

- Example:

$$
\begin{aligned}
& \text { - } A=\{1,2\}, B=\{a, b, c\} \\
& \text { - } A \times B=\text { ? } \\
& \text { - } B \times A=\text { ? }
\end{aligned}
$$

Basic Structures Sets

Definition (Ordered n-tuple)

The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the ordered collection that has a_{1} as its first element, a_{2} as its second element, \ldots, and a_{n} as its $n^{\text {th }}$ element.

Definition (Cartesian product of two sets)

Let A and B be sets. The cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Hence,

$$
A \times B=\{(a, b) \mid a \in A \wedge b \in B\}
$$

- Example:

$$
\begin{aligned}
& \text { - } A=\{1,2\}, B=\{a, b, c\} \\
& \text { - } A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c)\} \\
& -B \times A=\{(a, 1),(b, 1),(c, 1),(a, 2),(b, 2),(c, 2)\}
\end{aligned}
$$

Basic Structures Sets

Definition (Ordered n-tuple)

The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the ordered collection that has a_{1} as its first element, a_{2} as its second element, \ldots, and a_{n} as its $n^{\text {th }}$ element.

Definition (Cartesian product)

The Cartesian product of the sets $A_{1}, A_{2}, \ldots, A_{n}$, denoted by $A_{1} \times A_{2} \times \ldots \times A_{n}$, is the set of ordered n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, where a_{i} belongs to A_{i} for $i=1,2, \ldots, n$. In other words,

$$
A_{1} \times A_{2} \times \ldots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i} \text { for } i=1,2, \ldots, n\right\}
$$

Basic Structures Sets

Definition (Ordered n-tuple)

The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the ordered collection that has a_{1} as its first element, a_{2} as its second element, \ldots, and a_{n} as its $n^{\text {th }}$ element.

Definition (Cartesian product)

The Cartesian product of the sets $A_{1}, A_{2}, \ldots, A_{n}$, denoted by
$A_{1} \times A_{2} \times \ldots \times A_{n}$, is the set of ordered n-tuples ($a_{1}, a_{2}, \ldots, a_{n}$), where a_{i} belongs to A_{i} for $i=1,2, \ldots, n$. In other words,

$$
A_{1} \times A_{2} \times \ldots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i} \text { for } i=1,2, \ldots, n\right\}
$$

Definition (Relation)

A subset R of the Cartesian product $A \times B$ is called a relation from the set A to the set B. A relation from a set A to itself is called a relation on A.

Basic Structures
 Sets

- Given a predicate P, and a domain D, we define the truth set of P to be the set of elements x in D for which $P(x)$ is true. The truth set of $P(x)$ is denoted by $\{x \in D \mid P(x)\}$.
- Examples: Consider predicates $P(x):|x|=1, Q(x): x^{2}=2$, and $R(x):|x|=x$ and let the domain be the set of integers.
- Truth set of $P(x)=$?
- Truth set of $Q(x)=$?
- Truth set of $R(x)=$?

Basic Structures
 Sets

- Given a predicate P, and a domain D, we define the truth set of P to be the set of elements x in D for which $P(x)$ is true. The truth set of $P(x)$ is denoted by $\{x \in D \mid P(x)\}$.
- Examples: Consider predicates $P(x):|x|=1, Q(x): x^{2}=2$, and $R(x):|x|=x$ and let the domain be the set of integers.
- Truth set of $P(x)=\{-1,1\}$
- Truth set of $Q(x)=\emptyset$
- Truth set of $R(x)=\mathbb{N}$

Set operations

Basic Structures

Set operations

Definition (Union of sets)

Let A and B be sets. The union of the sets A and B, denoted by $A \cup B$, is the set that contains those elements that are in A or in B (this includes the element being present in both).

- $A \cup B=\{x \mid x \in A \vee x \in B\}$.

Definition (Intersection of sets)

Let A and B be sets. The intersection of the sets A and B, denoted by $A \cap B$, is the set that contains those elements that are both in A and in B.

- $A \cap B=\{x \mid x \in A \wedge x \in B\}$.
- Two sets are called disjoint if their intersection is the empty set.
- Show that $|A \cup B|=|A|+|B|-|A \cap B|$.

Basic Structures

Set operations

Definition (Union of sets)

Let A and B be sets. The union of the sets A and B, denoted by $A \cup B$, is the set that contains those elements that are in A or in B (this includes the element being present in both).

Definition (Intersection of sets)

Let A and B be sets. The intersection of the sets A and B, denoted by $A \cap B$, is the set that contains those elements that are both in A and in B.

$A \cup B$ is shaded.

$A \cap B$ is shaded.

Basic Structures

Set operations

Definition (Diffrence of sets)

Let A and B be sets. The difference of the sets A and B, denoted by $A-B$, is the set containing those elements that are in A but not in B. The difference of A and B is also called the complement of B with respect to A.

- $A-B=\{x \mid x \in A \wedge x \notin B\}$.
- The difference of sets A and B is sometimes denoted by $A \backslash B$.

Definition (Complement of a set)

Let U be the universal set. The complement of the set A denoted by \bar{A} is the complement of A with respect to U. Therefore, the complement of the set A is $U-A$.

- $\bar{A}=\{x \in U \mid x \notin A\}$.
- Show that $A-B=A \cap \bar{B}$.

Basic Structures

Set operations

Definition (Diffrence of sets)

Let A and B be sets. The difference of the sets A and B, denoted by $A-B$, is the set containing those elements that are in A but not in B. The difference of A and B is also called the complement of B with respect to A.

Definition (Complement of a set)

Let U be the universal set. The complement of the set A denoted by \bar{A} is the complement of A with respect to U. Therefore, the complement of the set A is $U-A$.

\bar{A} is shaded.

Basic Structures

Set operations

- Show that $\overline{A \cap B}=\bar{A} \cup \bar{B}$.
- Show (1) $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$, and (2) $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$.
- Use set builder notation.
- Use a membership table.

Basic Structures

Set operations

Identity	Name
$A \cap U=?$	Identity laws
$A \cup \varnothing=?$	
$A \cup U=?$	Domination laws
$A \cap \varnothing=?$	
$A \cup A=?$	Idempotent laws
$A \cap A=?$	
$(\bar{A})=?$	Complementation law
$A \cup B=B \cup ?$	Commutative laws
$A \cap B=B \cap ?$	
$A \cup(B \cup C)=?$	Associative laws
$A \cap(B \cap C)=?$	
$A \cup(B \cap C)=?$	Distributive laws
$A \cap(B \cup C)=?$	

Table: Set identities.

Basic Structures

Identity	Name
$A \cap U=A$	Identity laws
$A \vee \varnothing=A$	Domination laws
$A \cup U=U$	
$A \cap \varnothing=\varnothing$	Idempotent laws
$A \cup A=A$	
$A \cap A=A$	Complementation law
$\overline{(\bar{A})}=A$	Commutative laws
$A \cup B=B \cup A$	Associative laws
$A \cap B=B \cap A$	
$A \cup(B \cup C)=(A \cup B) \cup C$	Distributive laws
$A \cap(B \cap C)=(A \cap B) \cap C$	
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \cap(A \cap B) \cup(A \cap C)$	
$A \cap(B \cup C)=(A \cap B) \cup($	

Table: Set identities.

Basic Structures

Set operations

Idenitity	Name
$\overline{(A \cap B)}=$?	De Morgan's laws
$(A \cup B)=?$	
$A \cup(A \cap B)=?$	Absorption laws
$A \cap(A \cup B)=?$	
$A \cup \bar{A}=?$	Complement laws
$A \cap \bar{A}=?$	

Table: Set identities.

Basic Structures

Set operations

Idenitity	Name
$A \cap U=A$	Identity laws
$A \vee \varnothing=A$	Domination laws
$A \cup U=U$	
$A \cap \varnothing=\varnothing$	Idempotent laws
$A \cup A=A$	Complementation law
$A \cap A=A$	Commutative laws
$\overline{(\bar{A})}=A$	
$A \cup B=B \cup A$	Associative laws
$A \cap B=B \cap A$	Distributive laws
$A \cup(B \cup C)=(A \cup B) \cup C$	De Morgan's laws
$A \cap(B \cap C)=(A \cap B) \cap C$	Absorption laws
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$	
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$	
$\overline{(A \cap B)}=\bar{A} \cup \bar{B}$	Complement laws
$(A \cup B)=\bar{A} \cap \bar{B}$	
$A \cup(A \cap B)=A$	
$A \cap(A \cup B)=A$	
$A \cup \bar{A}=U$	
$A \cap \bar{A}=\varnothing$	

Table: Set identities.

- Use set identities to show that $\overline{A \cup(B \cap C)}=(\bar{C} \cup \bar{B}) \cap \bar{A}$.

Basic Structures: Functions

Basic Structures

Functions

Definition (Function)

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write $f(a)=b$ if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write $f: A \rightarrow B$.

Definition

If f is a function from A to B, we say that A is the domain of f and B is the codomain of f. If $f(a)=b$, we say that b is the image of a and a is a preimage of b. The range, or image, of f is the set of all images of elements of A. Also, if f is a function from A to B, we say that f maps A to B.

Basic Structures

Functions

Definition (Function)

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write $f(a)=b$ if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write $f: A \rightarrow B$.

Definition

If f is a function from A to B, we say that A is the domain of f and B is the codomain of f. If $f(a)=b$, we say that b is the image of a and a is a preimage of b. The range, or image, of f is the set of all images of elements of A. Also, if f is a function from A to B, we say that f maps A to B.

- Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ assign the square of an integer to this integer.
- What is the codomain of f ?
- What is the range of f ?

Basic Structures

Functions

Definition (real/integers-valued functions)

A function is called real-valued if its codomain is the set of real numbers, and it is called integer-valued if its codomain is the set of integers.

Definition (Sum/product of real/integer-valued functions)

Let f_{1} and f_{2} be functions from A to \mathbb{R}. Then $f_{1}+f_{2}$ and $f_{1} f_{2}$ are also functions from A to \mathbb{R} defined for all $x \in A$ by

$$
\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x), \quad\left(f_{1} f_{2}\right)(x)=f_{1}(x) f_{2}(x)
$$

- Example: Let f_{1} and f_{2} be functions from \mathbb{R} to \mathbb{R} such that $f_{1}(x)=x^{2}$ and $f_{2}(x)=x-x^{2}$. The what are:
- $\left(f_{1}+f_{2}\right)(x)=$?
- $\left(f_{1} f_{2}\right)(x)=$?

Basic Structures Functions

Definition

Let f be a function from A to B and let S be a subset of A. The image of S under the function f is the subset of B that consists of the images of the elements of S. We denote the image of S by $f(S)$, so

$$
f(S)=\{t \mid \exists s \in S(t=f(s))\}
$$

We also use the shorthand $\{f(s) \mid s \in S\}$ to denote this set.

- Let $A=\{a, b, c, d, e\}$ and $B=\{1,2,3,4\}$ with $f(a)=2, f(b)=1, f(c)=4, f(d)=1$, and $f(e)=1$. The image of the subset $S=\{b, c, d\}$ is the set $f(S)=$?.

Basic Structures Functions

Definition

Let f be a function from A to B and let S be a subset of A. The image of S under the function f is the subset of B that consists of the images of the elements of S. We denote the image of S by $f(S)$, so

$$
f(S)=\{t \mid \exists s \in S(t=f(s))\}
$$

We also use the shorthand $\{f(s) \mid s \in S\}$ to denote this set.

- Let $A=\{a, b, c, d, e\}$ and $B=\{1,2,3,4\}$ with $f(a)=2, f(b)=1, f(c)=4, f(d)=1$, and $f(e)=1$. The image of the subset $S=\{b, c, d\}$ is the set $f(S)=\{1,4\}$.

Basic Structures Functions

Definition (One-to-one functions)

A function f is said to be one-to-one, or an injunction, if and only if $f(a)=f(b)$ implies that $a=b$ for all a and b in the domain of f. A function is said to be injective if it is one-to-one.

- Consider a function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $f(x)=x^{2}$. Is this function one-to-one?

Basic Structures Functions

Definition (One-to-one functions)

A function f is said to be one-to-one, or an injunction, if and only if $f(a)=f(b)$ implies that $a=b$ for all a and b in the domain of f. A function is said to be injective if it is one-to-one.

- Consider a function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $f(x)=x^{2}$. Is this function one-to-one? No

Basic Structures

Functions

Definition (One-to-one functions)

A function f is said to be one-to-one, or an injunction, if and only if $f(a)=f(b)$ implies that $a=b$ for all a and b in the domain of f. A function is said to be injective if it is one-to-one.

Definition (Increasing/decreasing functions)

A function f whose domain and codomain are subsets of the set of real numbers is called increasing if $f(x) \leq f(y)$, and strictly increasing if $f(x)<f(y)$, whenever $x<y$ and x and y are in the domain of f. Similarly, f is called decreasing if $f(x) \geq f(y)$, and strictly decreasing if $f(x)>f(y)$, whenever $x<y$ and x and y are in the domain of f. (The word strictly in this definition indicates a strict inequality.)

- Prove or disprove: A strictly increasing function from \mathbb{R} to \mathbb{R} is one-to-one.

Basic Structures
 Functions

Definition (One-to-one functions)

A function f is said to be one-to-one, or an injunction, if and only if $f(a)=f(b)$ implies that $a=b$ for all a and b in the domain of f. A function is said to be injective if it is one-to-one.

Definition (Onto functions)

A function f from A to B is called onto, or a surjections, if and only if for every element $b \in B$ there is an element $a \in A$ with $f(a)=b$. A function f is called surjective if it is onto.

- Is the function $f(x)=x^{2}$ from \mathbb{Z} to \mathbb{Z} onto?

Basic Structures

Functions

Definition (One-to-one functions)

A function f is said to be one-to-one, or an injunction, if and only if $f(a)=f(b)$ implies that $a=b$ for all a and b in the domain of f. A function is said to be injective if it is one-to-one.

Definition (Onto functions)

A function f from A to B is called onto, or a surjections, if and only if for every element $b \in B$ there is an element $a \in A$ with $f(a)=b$. A function f is called surjective if it is onto.

Definition (Bijection)

The function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto. We also say that such a function is bijective.

(c) Not a function

Basic Structures
 Functions

- Suppose that $f: A \rightarrow B$.
- To show that f is injective: Show that if $f(x)=f(y)$ for arbitrary $x, y \in A$, then $x=y$.
- To show that f is not injective: Find particular elements $x, y \in A$ such that $x \neq y$ and $f(x)=f(y)$.
- To show that is surjective: Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that $f(x)=y$.
- To show that f is not surjective: Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

Basic Structures Functions

Definition (Inverse function)

Let f be a one-to-one correspondence from the set A to the set B. The inverse function of f is the function that assigns to an element b belonging to B the unique element a in A such that $f(a)=b$. The inverse function of f is denoted by f^{-1}. Hence, $f^{-1}(b)=a$ when $f(a)=b$.

- Example: Let f be a function from \mathbb{R} to \mathbb{R} with $f(x)=x^{2}$. Is f invertible?

Basic Structures Functions

Definition (Composition of functions)

Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The composition of the functions f and g, denoted for all $a \in A$ by $f \circ g$, is defined by $(f \circ g)(a)=f(g(a))$.

- Example: Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ and $g: \mathbb{Z} \rightarrow \mathbb{Z}$ be functions defined as $f(x)=2 x+3$ and $g(x)=3 x+2$. What is the composition of f and g ? What is the composition of g and f ?
- For any function f, what is the composition of f and f^{-1} ?
- For any function f, what is the composition of f^{-1} and f ?

Basic Structures

Functions

Definition (Graph of functions)

Let f be a function from the set A to the set B. The graph of a function f is the set of ordered pairs $\{(a, b) \mid a \in A$ and $f(a)=b\}$.

$\bullet(-3,9)$		
	$\bullet(-2,4)$	$(3,9) \bullet$
	$(-1,1) \bullet$	$\bullet(1,1)$

Figure: The graph of $f(x)=x^{2}$ from \mathbb{Z} to \mathbb{Z}.

Basic Structures
 Functions

Definition (Partial functions)

A partial function f from a set A to a set B is an assignment to each element a in a subset of A, called the domain of definition of f, of a unique element b in B. The sets A and B are called the domain and codomain of f, respectively. We say that f is undefined for elements in A that are not in the domain of definition of f. When the domain of definition of f equals A, we say that f is a total function.

- The function $f: \mathbb{Z} \rightarrow \mathbb{R}$ where $f(n)=\sqrt{n}$ is a partial function from \mathbb{Z} to \mathbb{R} where the domain of definition is the set of nonnegative integers.

Sequences and summations

Basic Structures Functions

Definition (Sequence)

A sequence is a function from a subset of the set of integers (usually either the set $\{0,1,2, \ldots\}$ or the set $\{1,2,3, \ldots\}$) to a set S. We use the notation a_{n} to denote the image of the integer n. We call a_{n} a term of the sequence.

- We use the notation $\left\{a_{n}\right\}$ to describe the sequence.
- Example: $\left\{a_{n}\right\}$ where $a_{n}=1 / n$. The terms of this sequence, beginning with a_{1} is $1,1 / 2,1 / 3,1 / 4, \ldots$.

Basic Structures Functions

Definition (Geometric progression)

A geometric progression is a sequence of the form $a, a r, a r^{2}, \ldots, a r^{n}, \ldots$ where the initial term a and the common ratio r are real numbers.

Definition (Arithmetic progression)

An arithmetic progression is a sequence of the form $a, a+d, a+2 d, \ldots, a+n d, \ldots$ where the initial term a and the common difference d are real numbers.

Basic Structures
 Functions

Definition (Recurrence relation)

A recurrence relation for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms of the sequence, namely, $a_{0}, a_{1}, \ldots, a_{n-1}$, for all integers n with $n \geq n_{0}$, where n_{0} is a nonnegative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

- Example: $\left\{a_{n}\right\}$ is a sequence that satisfies the recurrence relation $a_{n}=a_{n-1}-a_{n-2}$ for $n=2,3,4, \ldots$ and $a_{0}=3$ and $a_{1}=5$.

Basic Structures
 Functions

Definition (Recurrence relation)

A recurrence relation for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms of the sequence, namely, $a_{0}, a_{1}, \ldots, a_{n-1}$, for all integers n with $n \geq n_{0}$, where n_{0} is a nonnegative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

- The initial conditions for a recursively defined sequence specify the terms that precede the first term where the recurrence relation takes effect.
- We say that we have solved the recurrence relation together with the initial conditions when we find an explicit formula, called a closed formula, for the terms of the sequence.

Basic Structures
 Functions

Definition (Recurrence relation)

A recurrence relation for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms of the sequence, namely, $a_{0}, a_{1}, \ldots, a_{n-1}$, for all integers n with $n \geq n_{0}$, where n_{0} is a nonnegative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

- Solve the following recurrence relation and the initial condition:

$$
a_{n}=a_{n-1}+3 \text { for } n=1,2,3, \ldots \text { and } a_{0}=2 .
$$

Basic Structures
 Functions

Definition (Recurrence relation)

A recurrence relation for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms of the sequence, namely, $a_{0}, a_{1}, \ldots, a_{n-1}$, for all integers n with $n \geq n_{0}$, where n_{0} is a nonnegative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

- Solve the following recurrence relation and the initial condition:

$$
a_{n}=a_{n-1}+3 \text { for } n=1,2,3, \ldots \text { and } a_{0}=2 .\left(a_{n}=3 n+2\right)
$$

Cardinality of Sets

Basic Structures

Cardinality of Sets

Definition

The sets A and B have the same cardinality if there is a one-to-one correspondence from A to B. When A and B have the same cardinality, we write $|A|=|B|$.

Definition

If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write $|A| \leq|B|$. The cardinality of A is less than the cardinality of B, written as $|A|<|B|$, if there is an injection but no surjection from A to B.

Definition (Countable and uncountable sets)

A set that is either finite or has the same cardinality as the set of positive integers is called countable. A set that is not countable is called uncountable.

Basic Structures

Cardinality of Sets

Definition (Countable and uncountable sets)

A set that is either finite or has the same cardinality as the set of positive integers is called countable. A set that is not countable is called uncountable.

- Show that the set of odd positive integers is a countable set.

Basic Structures

Cardinality of Sets

Definition (Countable and uncountable sets)

A set that is either finite or has the same cardinality as the set of positive integers is called countable. A set that is not countable is called uncountable.

- An infinite set is countable if and only if it is possible to list the elements of the set in a sequence (indexed by the positive integers).

Basic Structures

Cardinality of Sets

Definition

The sets A and B have the same cardinality if there is a one-to-one correspondence from A to B. When A and B have the same cardinality, we write $|A|=|B|$.

Definition

If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write $|A| \leq|B|$. The cardinality of A is less than the cardinality of B, written as $|A|<|B|$, if there is an injection but no surjection from A to B.

Basic Structures

Cardinality of Sets

Definition

The sets A and B have the same cardinality if there is a one-to-one correspondence from A to B. When A and B have the same cardinality, we write $|A|=|B|$.

Definition

If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write $|A| \leq|B|$. The cardinality of A is less than the cardinality of B, written as $|A|<|B|$, if there is an injection but no surjection from A to B.

Theorem

Let S be a set. Then $|S|<|\mathcal{P}(S)|$.

Basic Structures

Cardinality of Sets

Definition

If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write $|A| \leq|B|$. The cardinality of A is less than the cardinality of B, written as $|A|<|B|$, if there is an injection but no surjection from A to B.

Theorem

$$
\text { Let } S \text { be a set. Then }|S|<|\mathcal{P}(S)| \text {. }
$$

Proof sketch

- We need to show the following:
(1) Claim 1: There is an injection from S to $\mathcal{P}(S)$.
(2) Claim 2: There is no surjection from S to $\mathcal{P}(S)$.

Basic Structures

Cardinality of Sets

Definition

If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write $|A| \leq|B|$. The cardinality of A is less than the cardinality of B, written as $|A|<|B|$, if there is an injection but no surjection from A to B.

Theorem

$$
\text { Let } S \text { be a set. Then }|S|<|\mathcal{P}(S)| \text {. }
$$

Proof sketch

- We need to show the following:
(1) Claim 1: There is an injection from S to $\mathcal{P}(S)$.
- Consider a function $f: S \rightarrow \mathcal{P}(S)$ defined as: for any $s \in S, f(s)=\{s\}$. This is an injective function.
(2) Claim 2: There is no surjection from S to $\mathcal{P}(S)$.

Basic Structures

Cardinality of Sets

Definition

If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write $|A| \leq|B|$. The cardinality of A is less than the cardinality of B, written as $|A|<|B|$, if there is an injection but no surjection from A to B.

Theorem

Let S be a set. Then $|S|<|\mathcal{P}(S)|$.

Proof sketch

- We need to show the following:
(1) Claim 1: There is an injection from S to $\mathcal{P}(S)$.
- Consider a function $f: S \rightarrow \mathcal{P}(S)$ defined as: for any $s \in S, f(s)=\{s\}$. This is an injective function.
(2) Claim 2: There is no surjection from S to $\mathcal{P}(S)$.
- Consider any function $f: S \rightarrow \mathcal{P}(S)$ and consider the following set defined in terms of this function: $A=\{x \mid x \notin f(x)\}$
- Claim 2.1: There does not exist an element $s \in S$ such that $f(s)=A$.

Basic Structures

Cardinality of Sets

Definition

If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write $|A| \leq|B|$. The cardinality of A is less than the cardinality of B, written as $|A|<|B|$, if there is an injection but no surjection from A to B.

Theorem

Let S be a set. Then $|S|<|\mathcal{P}(S)|$.

Proof sketch

- We need to show the following:
(1) Claim 1: There is an injection from S to $\mathcal{P}(S)$.
- Consider a function $f: S \rightarrow \mathcal{P}(S)$ defined as: for any $s \in S, f(s)=\{s\}$. This is an injective function.
(2) Claim 2: There is no surjection from S to $\mathcal{P}(S)$.
- Consider any function $f: S \rightarrow \mathcal{P}(S)$ and consider the following set defined in terms of this function: $A=\{x \mid x \notin f(x)\}$
- Claim 2.1: There does not exist an element $s \in S$ such that $f(s)=A$.
- Proof: For the sake of contradiction, assume that there is an $s \in S$ such that $f(s)=A$. The following bi-implications follow:

$$
\begin{aligned}
s \in A & \leftrightarrow \\
& s \in\{x \mid x \notin f(x)\} \\
& \leftrightarrow \\
& \leftrightarrow \notin f(s) \\
& s \notin A
\end{aligned}
$$

This is a contradiction. Hence the statement of the claim holds.

End

