COL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Ragesh Jaiswal, CSE, IIT Delhi COL202: Discrete Mathematical Structures

Proofs

Ragesh Jaiswal, CSE, IIT Delhi COL202: Discrete Mathematical Structures

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Э

- Direct proof
- Proof by contraposition
- Proof by contradiction
- Proofs of equivalence
- Proof by counterexample
- Exhaustive proof
- Proof by cases:
 - Without loss of generality (WLOG): When the phrase "without loss of generality" is used in a proof, we assert that by proving one case of a theorem, no additional argument is required to prove other specified cases. That is, other cases follow by making straightforward changes to the argument, or by filling in some straightforward initial step.
 - Example: Show that if x and y are integers and both xy and x + y are even, then both x and y are even.

周 ト イ ヨ ト イ ヨ ト

- Direct proof
- Proof by contraposition
- Proof by contradiction
- Proofs of equivalence
- Proof by counterexample
- Exhaustive proof
- Proof by cases:
 - What is wrong with this "proof"?

"Theorem:" If x is a real number, then x^2 is a positive real number. "Proof:" Let p_1 be "x is positive," let p_2 be "x is negative," and let q be " x^2 is positive." To show that $p_1 \rightarrow q$ is true, note that when x is positive, x^2 is positive because it is the product of two positive numbers, x and x. To show that $p_2 \rightarrow q$, note that when x is negative, x^2 is positive because it is the product of two negative numbers, x and x. This completes the proof.

- Direct proof
- Proof by contraposition
- Proof by contradiction
- Proofs of equivalence
- Proof by counterexample
- Exhaustive proof
- Proof by cases
- Existence proofs: Used for propositions of the form $\exists x \ P(x)$.
 - Constructive proof: Find an element *a* (called a *witness*) such that $\overline{P(a)}$ is true.
 - Nonconstructive proof: Proof without finding a witness. (Usually by contradiction.)

- Direct proof
- Proof by contraposition
- Proof by contradiction
- Proofs of equivalence
- Proof by counterexample
- Exhaustive proof
- Proof by cases
- Existence proofs
 - Examples:
 - Show that there is a positive integer that can be written as the sum of cubes of positive integers in two different ways.

- Direct proof
- Proof by contraposition
- Proof by contradiction
- Proofs of equivalence
- Proof by counterexample
- Exhaustive proof
- Proof by cases
- Existence proofs
 - Examples:
 - Show that there is a positive integer that can be written as the sum of cubes of positive integers in two different ways.
 - Show that there exist irrational numbers x and y such that x^{y} is rational.

- Direct proof
- Proof by contraposition
- Proof by contradiction
- Proofs of equivalence
- Proof by counterexample
- Exhaustive proof
- Proof by cases
- Existence proofs
- Uniqueness proofs: Statements that assert the existence of a unique elements with a particular property. The two parts of a uniqueness proof are:
 - Existence: Show that an element x with desired property exists.
 - Uniqueness: Show that $y \neq x$, then y does not have the desired property.

- Direct proof
- Proof by contraposition
- Proof by contradiction
- Proofs of equivalence
- Proof by counterexample
- Exhaustive proof
- Proof by cases
- Existence proofs
- Uniqueness proofs
 - Example:
 - Show that if a and b are real numbers and a ≠ 0, then there is a unique real number r such that ar + b = 0.

Proof Strategies

Ragesh Jaiswal, CSE, IIT Delhi COL202: Discrete Mathematical Structures

3

Image: A Image: A

- Forward reasoning: Use the premises, axioms, previous theorems in a sequence of steps to show that the conclusion follows. This also includes indirect proofs.
 - Issue: We might not know which premise, axiom, or theorem to use to derive the relevant conclusion.
- Backward reasoning: For proving a statement q, we try to find a statement p such that p is true and $p \rightarrow q$.
 - Example: Show that $(x + y)/2 > \sqrt{xy}$ when x and y are distinct positive real numbers.

- Forward and backward reasoning
- Adapting existing proofs: Adapting an existing proof to prove other facts.
 - Example: Show that $\sqrt{3}$ is irrational.

ヨト イヨト イヨト

- Forward and backward reasoning
- Adapting existing proofs
- Proof vs counterexample: For a new statement, switching back and forth between trying to prove the statement of finding a counterexample.
 - Example: Prove or disprove: "Every positive integer is the sum of squares of three integers."

Definition (Graph)

A graph G = (V, E) consists of V, a non-empty set of vertices (or nodes) and E, a set of edges. Each edge has two vertices associated with it, called its endpoints. An edge is said to connect its endpoints. The degree of a vertex is the number of edges incident on this vertex.

- Prove or disprove the following:
 - For any graph there are two vertices that have the same degree.
 - For any graph the number of odd degree vertices is even.

End

Ragesh Jaiswal, CSE, IIT Delhi COL202: Discrete Mathematical Structures

・ロト ・部 ト ・ヨト ・ヨト

3