COL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Ragesh Jaiswal, CSE, IIT Delhi COL202: Discrete Mathematical Structures

Proofs

Ragesh Jaiswal, CSE, IIT Delhi COL202: Discrete Mathematical Structures

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Э

- <u>Theorem</u>: A mathematical statement that can be shown to be true.
 - Theorem is usually reserved for a statement that is considered at least somewhat important.
 - Less important theorems sometimes are called *propositions*.
- Axiom (or postulate): A statement that is assumed to be true.
- Lemma: A less important theorem that is helpful in the proof of other results.
- Corollary: A theorem that can be established directly from a theorem that has been proved.
- Conjecture: A statement that is being proposed to be a true statement, usually on the basis of some partial evidence.

Logic Proofs

- <u>Theorem</u>: A mathematical statement that can be shown to be true.
 - Theorem is usually reserved for a statement that is considered at least somewhat important.
 - Less important theorems sometimes are called *propositions*.
- Axiom (or postulate): A statement that is assumed to be true.
- Lemma: A less important theorem that is helpful in the proof of other results.
- Corollary: A theorem that can be established directly from a theorem that has been proved.
- Conjecture: A statement that is being proposed to be a true statement, usually on the basis of some partial evidence.
- <u>Proof</u>: A valid argument that establishes the truth of a Theorem.
 - The statements used in a proof can include axioms, definitions, the premises, if any, of the theorem, and previously proven theorems and uses rules of inference to draw conclusions.

- Direct proof: Used for showing statements of the form $p \rightarrow q$. We assume that p is true and use axioms, definitions, and previously proven theorems, together with rules of inference, to show that q must also be true.
- Example: Give a direct proof of the theorem "*if n is an odd integer, then n*² *is odd.*"

Definition (Even and odd)

The integer *n* is even if there exists an integer *k* such that n = 2k, and *n* is odd is there exists an integer such that n = 2k + 1.

- Proof by contraposition: Used for proving statements of the form $p \rightarrow q$. We take $\neg q$ as a premise, and using axioms, definitions, and previously proven theorems, together with rules of inference, we show that $\neg p$ must follow.
- Examples:
 - Prove that if n is an integer and 3n + 2 is odd, then n is odd.
 - Prove that if n is an integer and n^2 is odd, then n is odd.
 - Prove that if n = ab, where a and b are positive integers, then $a \le \sqrt{n}$ or $b \le \sqrt{n}$.

- Vacuous proof: When proving $p \rightarrow q$, a proof showing p to be false is called a vacuous proof.
 - Example: Show that the proposition P(0) is true, where P(n) is "if n > 1, then $n^2 > n$ " and the domain consists of all integers.
- Trivial proof: When proving $p \rightarrow q$, a proof showing q to be true is called a trivial proof.
 - Example: Let P(n) be "If a and b are positive integers with a ≥ b, then aⁿ ≥ bⁿ," where the domain consists of all nonnegative integers. Show that P(0) is true.

ヨッ イヨッ イヨッ

• Direct proof

- Proof by contraposition
- Proof by contradiction: Suppose we want to prove that a statement p is true and suppose we can find a contradiction q such that ¬p → q is true. Since q is false, but ¬p → q is true, we can conclude that ¬p is false, which means that p is true. The contradiction q is usually of the form r ∧ ¬r for some proposition r.
- Examples:
 - Show that at least four of any 22 days must fall on the same day of the week.

Logic Proof techniques

- Direct proof
- Proof by contraposition
- Proof by contradiction: Suppose we want to prove that a statement p is true and suppose we can find a contradiction q such that $\neg p \rightarrow q$ is true. Since q is false, but $\neg p \rightarrow q$ is true, we can conclude that $\neg p$ is false, which means that p is true. The contradiction q is usually of the form $r \land \neg r$ for some proposition r.
- Examples:
 - Show that at least four of any 22 days must fall on the same day of the week.
 - Prove that $\sqrt{2}$ is irrational by giving proof by contradiction.

Definition (Rational and irrational)

The real number r is rational if there exists integers p and q with $q \neq 0$ such that r = p/q. A real number that is not rational is called irrational.

A (10) A (10)

- Direct proof
- Proof by contraposition
- Proof by contradiction: Suppose we want to prove that a statement q is true and suppose we can find a contradiction t such that $\neg q \rightarrow t$ is true. Since t is false, but $\neg q \rightarrow t$ is true, we can conclude that $\neg q$ is false, which means that q is true. The contradiction t is usually of the form $r \land \neg r$ for some proposition r.
- Proof by contraposition is a special case of proof by contradiction.
 - We assume that the premise p is true. Then we show that $\neg q \rightarrow \neg p$. Now since $[(\neg q \rightarrow \neg p) \land p] \rightarrow [\neg q \rightarrow (p \land \neg p)]$ is a tautology, we conclude $\neg q \rightarrow (p \land \neg p)$ which implies that q is true.

伺下 イヨト イヨト

• Direct proof

- Proof by contraposition
- Proof by contradiction: Suppose we want to prove that a statement q is true and suppose we can find a contradiction t such that $\neg q \rightarrow t$ is true. Since t is false, but $\neg q \rightarrow t$ is true, we can conclude that $\neg q$ is false, which means that q is true. The contradiction t is usually of the form $r \land \neg r$ for some proposition r.
- Examples:
 - Show that at least four of any 22 days must fall on the same day of the week.

Logic Proof techniques

- Direct proof
- Proof by contraposition
- Proof by contradiction: Suppose we want to prove that a statement \overline{q} is true and suppose we can find a contradiction t such that $\neg q \rightarrow t$ is true. Since t is false, but $\neg q \rightarrow t$ is true, we can conclude that $\neg q$ is false, which means that q is true. The contradiction t is usually of the form $r \land \neg r$ for some proposition r.
- Examples:
 - Show that at least four of any 22 days must fall on the same day of the week.
 - Prove that $\sqrt{2}$ is irrational by giving proof by contradiction.

Definition (Rational and irrational)

The real number r is rational if there exists integers p and q with $q \neq 0$ such that r = p/q. A real number that is not rational is called irrational.

A (10) A (10)

- Direct proof
- Proof by contraposition
- Proof by contradiction
- Other ideas:
 - Proofs of equivalence:
 - To show statements of the form $p \leftrightarrow q$ we have to show
 - p
 ightarrow q and q
 ightarrow p.
 - How do we show $p_1 \leftrightarrow p_2 \leftrightarrow ... \leftrightarrow p_n$?

- - E b - - E b

- Direct proof
- Proof by contraposition
- Proof by contradiction
- Other ideas:
 - Proofs of equivalence:
 - To show statements of the form $p \leftrightarrow q$ we have to show $p \rightarrow q$ and $q \rightarrow p$.
 - To show $p_1 \leftrightarrow p_2 \leftrightarrow ... \leftrightarrow p_n$, it is sufficient to show that $p_1 \rightarrow p_2, p_2 \rightarrow p_3, ..., p_{n-1} \rightarrow p_n, p_n \rightarrow p_1$
 - Example: Show that the following statements are equivalent: $(p_1) \ n$ is even, $(p_2) \ n-1$ is odd, $(p_3) \ n^2$ is even.

□ ► < □ ► < □ ►</p>

- Direct proof
- Proof by contraposition
- Proof by contradiction
- Other ideas:
 - Proofs of equivalence
 - Proof by counterexample: Suppose we want to show that the statement $\forall x \ P(x)$ is false then we only need to find a counterexample, that is, an example x for which P(x) is false.
 - Example: Show that the statement "Every positive integer is the sum of squares of two integers" is false.

- What is wrong with the following proofs?
 - <u>"Theorem"</u>: If n^2 is positive, then *n* is positive.
 - <u>"Proof"</u>: Suppose that n^2 is positive. Because the conditional statement "If *n* is positive, then n^2 is positive" is true, we can conclude that *n* is positive.
 - <u>"Theorem"</u>: If *n* is not positive, then n^2 is not positive.
 - <u>"Proof"</u>: Suppose that *n* is not positive. Because the conditional statement "If *n* is positive, then n^2 is positive" is true, we can conclude that n^2 is not positive.
 - <u>"Theorem"</u>: If n^2 is even, then *n* is even.
 - <u>"Proof"</u>: Suppose that n^2 is even. Then $n^2 = 2k$ for some integer k. Let n = 2l for some integer l. This shows that n is even.

伺 と く ヨ と く ヨ と

- Direct proof
- Proof by contraposition
- Proof by contradiction
- Proofs of equivalence
- Proof by counterexample
- Proof by cases: Suppose we want to show a statement of the form $(p_1 \vee p_2 \vee ... \vee p_n) \rightarrow q$. That is, a statement where the hypothesis is made of a disjunction of propositions. Then such a statement can be proven by proving each of the *n* conditional statements $p_i \rightarrow q$, i = 1, 2, ..., n.
 - This follows from the tautology $[(p_1 \lor p_2 \lor ... \lor p_n) \to q] \leftrightarrow [(p_1 \to q) \land (p_2 \to q) \land ... \land (p_n \to q)].$

- Direct proof
- Proof by contraposition
- Proof by contradiction
- Proofs of equivalence
- Proof by counterexample
- Proof by cases
- Exhaustive proofs (proofs by exhaustion): This is a special case of proof by cases where each case involves checking a single example.

- Direct proof
- Proof by contraposition
- Proof by contradiction
- Proofs of equivalence
- Proof by counterexample
- Proof by cases
- Exhaustive proof (proof by exhaustion): This is a special case of proof by cases where each case involves checking a single example.
 - Prove that $(n+1)^3 \ge 3^n$, if n is a positive integer with $n \le 4$.

- Direct proof
- Proof by contraposition
- Proof by contradiction
- Proofs of equivalence
- Proof by counterexample
- Exhaustive proof
- Proof by cases:
 - Prove that if *n* is an integer, then $n^2 \ge n$.

Logic Proof techniques

- Direct proof
- Proof by contraposition
- Proof by contradiction
- Proofs of equivalence
- Proof by counterexample
- Exhaustive proof
- Proof by cases:
 - Without loss of generality (WLOG): When the phrase "without loss of generality" is used in a proof, we assert that by proving one case of a theorem, no additional argument is required to prove other specified cases. That is, other cases follow by making straightforward changes to the argument, or by filling in some straightforward initial step.
 - Example: Show that if x and y are integers and both xy and x + y are even, then both x and y are even.

周 ト イ ヨ ト イ ヨ ト

End

Ragesh Jaiswal, CSE, IIT Delhi COL202: Discrete Mathematical Structures

・ロト ・部 ト ・ヨト ・ヨト

3