Name: \qquad

Entry number: \qquad
There are 3 questions for a total of 10 points.

1. Let X be a random variable denoting the number of people attending a conference. We know that $\mathbf{E}[X]=100$. Everyone shakes hand with everyone else at the conference and let Y denote the total number of handshakes. We know that $\mathbf{E}[Y]=5000$. Answer the following questions.
(a) ($1 \frac{1}{2}$ points) What is the variance of X ? Show calculations in the space below.
(a)
(b) ($1 \frac{1}{2}$ points) Use Chebychev's inequality to give an upper bound on the probability that less than 80 people attend the conference?
(b) \qquad
2. (4 points) Consider executing the following algorithm on an array $A[1 \ldots n]$ containing n distinct numbers $\left\{N_{1}, N_{2}, \ldots, N_{n}\right\}$ permuted randomly.
```
FindMax ( }A,n
    - Max}\leftarrowA[1
    - For }i=2\mathrm{ to }
        - If (A[i]>Max)Max}\leftarrowA[i
    - return(Max)
```

Let X be the random variable denoting the number of times the variable Max is updated within the for loop of the FindMax algorithm. What is $\mathbf{E}[X]$ as a function of n ? Express your answer concisely using big-Theta notation. Show your calculations in the space below.
2. \qquad
3. Consider the following randomized quick-sort algorithm for sorting an array A containing distinct numbers:

```
Randomized-Quick-Sort ( \(A\) )
    - If \((|A|=1)\) return \((A)\)
    - Randomly pick an index \(i\) in the array \(A\)
    - Use \(A[i]\) as a pivot to partition \(A\) into \(A_{L}\) and \(A_{R}\)
    // That is, \(A_{L}\) denotes the array of elements that are smaller than \(A[i]\), and \(A_{R}\) denotes the
    \(/ /\) array of elements that are larger than \(A[i]\). The relative ordering of elements in \(A_{L}\) (and \(A_{R}\) )
    //is the same as that in \(A\)
    - \(B_{L} \leftarrow\) Randomized-Quick-Sort \(\left(A_{L}\right)\)
    - \(B_{R} \leftarrow\) Randomized-Quick-Sort \(\left(A_{R}\right)\)
    - return \(\left(B_{L}|A[i]| B_{R}\right)\)
```

We will try to compute the expected number of pairwise comparisons performed by the algorithm during its execution. Note that comparisons are done during the pivoting operation.
(a) ($1 \frac{1}{2}$ points) For $i<j$, let $X_{i j}$ denote the indicator random variable that is 1 if a comparison between $A[i]$ and $A[j]$ is done during the execution of the algorithm and 0 otherwise. What is the value of $\mathbf{E}\left[X_{i j}\right]$ in terms of i and j ? You do not need to give reasons.
(a) \qquad
(b) ($1 \frac{1}{2}$ points) Let $X=\sum_{i<j} X_{i j}$. Note that X denotes the total number of pairwise comparisons. Use part (a) to give $\mathbf{E}[X]$ as a function of n. Express your answer concisely using big-Theta notation. You do not need to show calculations.
(b)

