Name: \qquad

Entry number: \qquad

There are 3 questions for a total of 10 points.

1. Let X be a random variable denoting the number of people attending a conference. We know that $E[X]=100$. Everyone shakes hand with everyone else at the conference and let Y denote the total number of handshakes. We know that $E[Y]=5000$. Answer the following questions.
(a) ($1 \frac{1}{2}$ points) What is the variance of X ? Show calculations in the space below.
(a) \qquad

Solution: Since $Y=\binom{X}{2}$, we have $5000=E[Y]=E[(1 / 2) \cdot X(X-1)]=(1 / 2) \cdot E\left[X^{2}\right]-(1 / 2)$. $E[X]$. Since, $E[X]=100$, we get that $E\left[X^{2}\right]=10100$. Now, $\operatorname{Var}[X]=E\left[X^{2}\right]-(E[X])^{2}=$ $10100-10000=100$.
(b) ($1 \frac{1}{2}$ points) Use Chebychev's inequality to give an upper bound on the probability that less than 80 people attend the conference?

Solution: Using Chebychev's inequality, we get the following:

$$
\begin{aligned}
\operatorname{Pr}[X<80] & \leq \operatorname{Pr}[|X-100| \geq 21] \\
& =\operatorname{Pr}[|X-E[X]| \geq 21] \\
& \leq \frac{\operatorname{Var}[X]}{21^{2}}=\frac{100}{21^{2}}
\end{aligned}
$$

2. (4 points) Consider executing the following algorithm on an array $A[1 \ldots n]$ containing n distinct numbers $\left\{N_{1}, N_{2}, \ldots, N_{n}\right\}$ permuted randomly.
```
FindMax ( }A,n
    - Max}\leftarrowA[1
    - For }i=2\mathrm{ to }
        - If (A[i]> Max)Max}\leftarrowA[i
    - return(Max)
```

Let X be the random variable denoting the number of times the variable $M a x$ is updated within the for loop of the FindMax algorithm. What is $\mathbf{E}[X]$ as a function of n ? Express your answer concisely using big-Theta notation. Show your calculations in the space below.
2. \qquad

Solution: Let X_{j} be the indicator random variable that is 1 if in iteration j the value of Max is updated and 0 otherwise. Let $X=\sum_{j=2}^{n} X_{j}$. In iteration j, the value of Max is updated iff $A[j]$ is the maximum element in the subarray $A[1 \ldots j]$. The probability of this happening is $\frac{1}{j}$. So, we have $\mathbf{E}\left[X_{j}\right]=\frac{1}{j}$. So, from linearity of expectation, we get that $\mathbf{E}[X]=\sum_{j=2}^{n} \mathbf{E}\left[X_{j}\right]=\sum_{j=2}^{n} \frac{1}{j}$. Let $H_{n}=1+1 / 2+1 / 3+\ldots+1 / n$. The following (outlined in class) holds.

$$
\begin{aligned}
& \int_{1}^{n} \frac{1}{x} d x \leq H_{n} \leq 1+\int_{2}^{n+1} \frac{1}{x-1} d x \\
& \quad \Rightarrow \ln n \leq H_{n} \leq 1+\ln n
\end{aligned}
$$

This gives $\mathbf{E}[X]=H_{n}-1=\Theta(\log n)$.
3. Consider the following randomized quick-sort algorithm for sorting an array A containing distinct numbers:

```
Randomized-Quick-Sort(A)
    - If (|A|=1)return(A)
    - Randomly pick an index }i\mathrm{ in the array }
    - Use }A[i]\mathrm{ as a pivot to partition }A\mathrm{ into }\mp@subsup{A}{L}{}\mathrm{ and }\mp@subsup{A}{R}{
        // That is, }\mp@subsup{A}{L}{}\mathrm{ denotes the array of elements that are smaller than A[i], and }\mp@subsup{A}{R}{}\mathrm{ denotes the
        // array of elements that are larger than A[i]. The relative ordering of elements in }\mp@subsup{A}{L}{}(\mathrm{ and }\mp@subsup{A}{R}{}\mathrm{ )
        //is the same as that in A
    - }\mp@subsup{B}{L}{}\leftarrow\mathrm{ Randomized-Quick-Sort ( }\mp@subsup{A}{L}{}\mathrm{ )
    - }\mp@subsup{B}{R}{}\leftarrow\mathrm{ Randomized-Quick-Sort ( }\mp@subsup{A}{R}{}\mathrm{ )
    - return( }\mp@subsup{B}{L}{}|A[i]|\mp@subsup{B}{R}{}
```

We will try to compute the expected number of pairwise comparisons performed by the algorithm during its execution. Note that comparisons are done during the pivoting operation.
(a) ($1 \frac{1}{2}$ points) For $i<j$, let $X_{i j}$ denote the indicator random variable that is 1 if a comparison between $A[i]$ and $A[j]$ is done during the execution of the algorithm and 0 otherwise. What is the value of $\mathbf{E}\left[X_{i j}\right]$ in terms of i and j ? You do not need to give reasons.

(b) ($1 \frac{1}{2}$ points) Let $X=\sum_{i<j} X_{i j}$. Note that X denotes the total number of pairwise comparisons. Use part (a) to give $\mathbf{E}[X]$ as a function of n. Express your answer concisely using big-Theta notation. You do not need to show calculations.
(b) $\Theta(n \log n)$

This is for explanation. You were not expected to write this.

After $A[i]$ and $A[j]$ get partitioned, they cannot be compared anymore. When they get partitioned, they get compared when either $A[i]$ is chosen as pivot or $A[j]$ is chosen as pivot. So, the probability of this is $\frac{2}{j-i+1}$.

