Name:

Entry number: \qquad

There are 2 questions for a total of 10 points.

1. Answer the following questions.
(a) (1 point) State true or false (no reasons required): The probability of having an empty bin when throwing k distinguishable balls randomly into n distinguishable bins is the same as the probability of having an empty bin when throwing k indistinguishable balls randomly into n distinguishable bins.
(a) True

This is for explanation. You were not expected to write this.
Note that the randomness is over the random choices made when throwing the balls. Suppose there is an n-sided dice that is rolled every time the ball is supposed to thrown randomly. The sample space is $\{1, \ldots, n\} \times\{1, \ldots, n\} \times \ldots \times\{1, \ldots, n\}$ (all possible dice rolls) and the number of favourable cases is the same in both the scenarios.
(b) (4 points) Suppose you flip a biased coin that turns heads with probability p. What is the probability that you get even number of heads in n coin tosses. You have to give a concise expression.
(b) $\frac{1}{2}+\frac{1}{2} \cdot(1-2 p)^{n}$

Solution: Let Q denote this probability. Then we have

$$
Q=\binom{n}{0} \cdot p^{0} \cdot(1-p)^{n}+\binom{n}{2} \cdot p^{2} \cdot(1-p)^{n-2}+\binom{n}{4} \cdot p^{4} \cdot(1-p)^{n-4}+\ldots
$$

We know that

$$
((1-p)+(p))^{n}=\binom{n}{0} \cdot p^{0} \cdot(1-p)^{n}+\binom{n}{1} \cdot p^{1} \cdot(1-p)^{n-1}+\binom{n}{2} \cdot p^{2} \cdot(1-p)^{n-2}+\binom{n}{3} \cdot p^{3} \cdot(1-p)^{n-3}+\ldots
$$

and

$$
((1-p)+(-p))^{n}=\binom{n}{0} \cdot p^{0} \cdot(1-p)^{n}-\binom{n}{1} \cdot p^{1} \cdot(1-p)^{n-1}+\binom{n}{2} \cdot p^{2} \cdot(1-p)^{n-2}-\binom{n}{3} \cdot p^{3} \cdot(1-p)^{n-3}+\ldots
$$

Adding the last two equations, we get $1+(1-2 p)^{n}=2 \cdot Q$. This gives $Q=\frac{1}{2}+\frac{1}{2} \cdot(1-2 p)^{n}$.
2. (5 points) A fair coin is tossed repeatedly until two consecutive heads are tossed. Find the probability that the coin was tossed 11 times. Show calculations in the space below.

Solution: The total number of outcomes of n fair coin tosses are 2^{n}. We will count the total number of favourable cases. If $n \geq 3$, then any favourable case, can be denoted by a string in $\{H, T\}^{n}$ that ends with $T H H$ and does not have consecutive H 's at any previous position. Let a_{m} denote the number of H / T strings of length m that does not have consecutive H 's. Then we have the following recurrence relation $\forall m \geq 2, a_{m}=a_{m-1}+a_{m-2}$. Also, $a_{1}=2$ and $a_{2}=3$. The recurrence relation is true since strings of length m not having consecutive H 's is made of strings of length $m-1$ that do not have consecutive H 's followed by a T and strings of length $m-2$ that do not have consecutive H 's followed by $T H$. Note that the solution of the recurrence relation is $\forall n \geq 1, a_{n}=F_{n+2}$, where F_{k} denotes the $k^{t h}$ Fibonacci number $\left(F_{0}=0, F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3, F_{5}=5, F_{6}=8, F_{7}=\right.$ $\left.13, F_{8}=21, F_{9}=34, F_{10}=55, F_{11}=89, F_{12}=144, \ldots\right)$.
Note that the number of favourable coin tosses $\forall n \geq 4$ is given by $a_{n-3}=F_{n-1}$. Let Q_{n} denote the probability the coin was tossed n times. Then we have $Q_{1}=0, Q_{2}=1 / 4, Q_{3}=1 / 8$, and $\forall n \geq 4, Q_{n}=\frac{F_{n-1}}{2^{n}}$. In general, we can write $\forall n \geq 1, Q_{n}=\frac{F_{n-1}}{2^{n}}$. So, $Q_{11}=\frac{F_{10}}{2^{11}}=\frac{55}{2048}$.

